首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HLA-B27 transgenic animal models suggest a role for CD4(+) T lymphocytes in the pathogenesis of the spondyloarthropathies, and murine studies have raised the possibility that unusual forms of B27 may be involved in disease. We demonstrate that CD4(+) T cells capable of recognizing B27 can be isolated from humans by coculture with the MHC class II-negative cell line T2 transfected with B27. These CD4(+) T cells recognize a panel of B27-transfected cell lines that are defective in Ag-processing pathways, but not the nontransfected parental cell lines, in a CD4-dependent fashion. Inhibition of responses by the MHC class I-specific mAb w6/32 and the B27 binding mAb ME1 implicates the recognition of a form of B27 recognized by both of these Abs. We suggest that B27-reactive CD4(+) T cells may be pathogenic in spondyloarthropathies, particularly if factors such as infection influence expression of abnormal forms of B27.  相似文献   

2.
The HLA-B27 molecule is strongly associated with the spondyloarthropathies (SpA), a group of inflammatory conditions affecting the skeleton, the skin and several mucosae. The mechanism of this association remains unknown, largely because the HLA-B27 molecule displays normal function. A disease that closely mimicks SpA arises spontaneously in HLA-B27 transgenic rats. This disease is dependent on the presence of a normal bacterial flora and implicates the immune system. The presence of both CD4+ T cells and antigen presenting cells (APCs) expressing high levels of HLA-B27, seems of critical importance in its pathogenesis, whereas CD8+ T cells are dispensable. The T cell stimulatory function of APCs is disturbed by the HLA-B27 molecule. This disease could result from a failure of tolerance, related in part to high level of B27 expression in professional APCs and to the immune response to gut bacteria. In contrast, HLA-B27 transgenic mice have usually remained healthy. However, two types of inflammatory conditions affecting the skeleton, which arise in mice of susceptible background after exposure to a conventional bacterial flora, are increased by an HLA-B27 transgene. The first is ANKENT, a spontaneous ankylosing enthesitis that affects ankle and/or tarsal joints of ageing mice; the second is a spontaneous arthritis of hindpaws developing in mice lacking endogenous mbeta2m. As in rats, the absence of CD8+ T cells in the latter model, argues against the "arthritogenic peptide" hypothesis. In these mbeta2m0 mice, B27 free heavy chain could be implicated in the pathogenesis of arthritis by presenting extracellular peptides to CD4+ T cells.  相似文献   

3.
The association of HLA-B27 with ankylosing spondylitis and reactive arthritis is the strongest one known between an MHC class I Ag and a disease. We have searched the proteome of the bacterium Chlamydia trachomatis for HLA-B27 binding peptides that are stimulatory for CD8(+) cells both in a model of HLA-B27 transgenic mice and in patients. This was done by combining two biomathematical computer programs, the first of which predicts HLA-B27 peptide binding epitopes, and the second the probability of HLA-B27 peptide generation by the proteasome system. After preselection, immunodominant peptides were identified by Ag-specific flow cytometry. Using this approach we have identified for the first time nine peptides derived from different C. trachomatis proteins that are stimulatory for CD8(+) T cells. Eight of these nine murine-derived peptides were recognized by cytotoxic T cells. The same strategy was used to identify B27-restricted chlamydial peptides in three patients with reactive arthritis. Eleven peptides were found to be stimulatory for patient-derived CD8(+) T cells, of which eight overlapped those found in mice. Additionally, we applied the tetramer technology, showing that a B27/chlamydial peptide containing one of the chlamydial peptides stained CD8(+) T cells in patients with Chlamydia-induced arthritis. This comprehensive approach offers the possibility of clarifying the pathogenesis of B27-associated diseases.  相似文献   

4.
Interaction of CD8 (CD8alphaalpha or CD8alphabeta) with the peptide-major histocompatibility complex (MHC) class I (pMHCI) is critical for the development and function of cytolytic T cells. Although the crystal structure of CD8alphaalpha.pMHCI complex revealed that two symmetric CD8alpha subunits interact with pMHCI asymmetrically, with one subunit engaged in more extensive interaction than the other, the details of the interaction between the CD8alphabeta heterodimer and pMHCI remained unknown. The Ig-like domains of mouse CD8alphabeta and CD8alphaalpha are similar in the size, shape, and surface electrostatic potential of their pMHCI-binding regions, suggesting that their interactions with pMHCI could be very similar. Indeed, we found that the CD8alpha variants CD8alpha(R8A) and CD8alpha(E27A), which were functionally inactive as homodimers, could form an active co-receptor with wild-type (WT) CD8beta as a CD8alpha(R8A)beta or CD8alpha(E27A)beta heterodimer. We also identified CD8beta variants that could form active receptors with WT CD8alpha but not with CD8alpha(R8A). This observation is consistent with the notion that the CD8beta subunit may replace either CD8alpha subunit in CD8alphaalpha.pMHCI complex. In addition, we showed that both anti-CD8alpha and anti-CD8beta antibodies were unable to completely block the co-receptor activity of WT CD8alphabeta. We propose that CD8alphabeta binds to pMHCI in at least two distinguishable orientations.  相似文献   

5.
Activation-induced cell death (AICD) plays a key role in the homeostasis of the immune system. Autoreactive T cells are eliminated through AICD both from the thymus and periphery. In this study, we show that NOD peripheral T cells, especially CD8(+) T cells, display a decreased susceptibility to anti-CD3-induced AICD in vivo compared with T cells from diabetes-resistant B6, nonobese diabetes-resistant, and NOD.B6Idd4 mice. The susceptibility of NOD CD8(+) T cells to AICD varies in an age- and dose-dependent manner upon stimulation in vivo with either a mitogenic or nonmitogenic anti-CD3. NOD T cells preactivated by anti-CD3 in vivo are less susceptible than B6 T cells to TCR-induced AICD. Treatment of NOD mice with a mitogenic anti-CD3 depletes CD4(+)CD25(-)CD62L(+) but not CD4(+)CD25(+)CD62L(+) T cells, thereby resulting in an increase of the latter subset in the spleen. Treatment with a nonmitogenic anti-CD3 mAb delays the onset of T1D in 8.3 TCR transgenic NOD mice. These results demonstrate that the capacity of anti-CD3 to protect NOD mice from T1D correlates with its ability to perturb T cell homeostasis by inducing CD8(+) T cell AICD and increasing the number of CD4(+)CD25(+)CD62L(+) T cells in the periphery.  相似文献   

6.
In the DBA/2 --> unirradiated (C57BL/6 x DBA/2)F(1) model of chronic graft-vs-host disease (cGVHD), donor CD4(+) T cells play a critical role in breaking host B cell tolerance, while donor CD8(+) T cells are rapidly removed and the remaining cells fall into anergy. Previously we have demonstrated that in vivo ligation of GITR (glucocorticoid-induced TNF receptor-related gene) can activate donor CD8(+) T cells, subsequently converting the disease pattern from cGVHD to an acute form. In this study, we investigated the effect of an agonistic mAb against CD40 on cGVHD. Treatment of anti-CD40 mAb inhibited the production of anti-DNA IgG1 autoantibody and the development of glomerulonephritis. The inhibition of cGVHD occurred because anti-CD40 mAb prevented donor CD8(+) T cell anergy such that subsequently activated donor CD8(+) T cells deleted host CD4(+) T cells and host B cells involved in autoantibody production. Additionally, functionally activated donor CD8(+) T cells induced full engraftment of donor hematopoietic cells and exhibited an increased graft-vs-leukemia effect. However, induction of acute GVHD by donor CD8(+) T cells seemed to be not so apparent. Further CTL analysis indicated that there were lower levels of donor CTL activity against host cells in mice that received anti-CD40 mAb, compared with mice that received anti-GITR mAb. Taken together, our results suggest that a different intensity of donor CTL activity is required for removal of host hematopoietic cells, including leukemia vs induction of acute GVHD.  相似文献   

7.
B cells have been implicated in the pathogenesis of rheumatoid arthritis (RA) since the discovery of RA as an autoimmune disease. There is renewed interest in B cells in RA based on the clinical efficacy of B cell depletion therapy in RA patients. Although, reduced titers of rheumatoid factor and anti-cyclic citrullinated peptide Abs are recorded, the mechanisms that convey clinical improvement are incompletely understood. In the proteoglycan-induced arthritis (PGIA) mouse model of RA, we reported that Ag-specific B cells have two important functions in the development of arthritis. PG-specific B cells are required as autoantibody-producing cells as well as Ag-specific APCs. Herein we report on the effects of anti-CD20 mAb B cell depletion therapy in PGIA. Mice were sensitized to PG and treated with anti-CD20 Ab at a time when PG-specific autoantibodies and T cell activation were evident but before acute arthritis. In mice treated with anti-CD20 mAb, development of arthritis was significantly reduced in comparison to control mAb-treated mice. B cell depletion reduced the PG-specific autoantibody response. Furthermore, there was a significant reduction in the PG-specific CD4(+) T cell recall response as well as significantly fewer PG-specific CD4(+) T cells producing IFN-gamma and IL-17, but not IL-4. The reduction in PG-specific T cells was confirmed by the inability of CD4(+) T cells from B cell-depleted mice to adoptively transfer disease into SCID mice. Overall, B cell depletion during PGIA significantly reduced disease and inhibited both autoreactive B cell and T cell function.  相似文献   

8.
The pathology of ankylosing spondylitis, reactive arthritis, and other spondyloarthropathies (SpA) is closely associated with the human leukocyte class I Ag HLA-B27. A characteristic finding in SpA is inflammation of cartilage structures of the joint, in particular at the site of ligament/tendon and bone junction (enthesitis). In this study, we investigated the role of CD8+ T cells in response to the cartilage proteoglycan aggrecan as a potential candidate autoantigen in BALB/c-B27 transgenic mice. We identified four new HLA-B27-restricted nonamer peptides, one of them (no. 67) with a particularly strong T cell immunogenicity. Peptide no. 67 immunization was capable of stimulating HLA-B27-restricted, CD8+ T cells in BALB/c-B27 transgenic animals, but not in wild-type BALB/c mice. The peptide was specifically recognized on P815-B27 transfectants by HLA-B27-restricted CTLs, which were also detectable by HLA tetramer staining ex vivo as well as in situ. Most importantly, analysis of the joints from peptide no. 67-immunized mice induced typical histological signs of SpA. Our data indicate that HLA-B27-restricted epitopes derived from human aggrecan are involved in the induction of inflammation (tenosynovitis), underlining the importance of HLA-B27 in the pathogenesis of SpA.  相似文献   

9.
Potent costimulation of effector T lymphocytes by human collagen type I   总被引:5,自引:0,他引:5  
Purified, resting peripheral blood T lymphocytes were previously reported to undergo beta(1) integrin-dependent activation when cultured with anti-CD3 mAb coimmobilized with fibronectin, but not type I collagen. However, the extravascular T cells that encounter immobilized extracellular matrix proteins and are involved in disease pathogenesis have different properties from resting peripheral blood cells. In this study, we confirm that resting CD4(+) and CD8(+) T cells from peripheral blood are costimulated by immobilized fibronectin, but not type I collagen. In contrast, Ag- or mitogen-stimulated CD4(+) and CD8(+) T cell lines, used as models of the effector cells involved in disease, are more potently costimulated by type I collagen than fibronectin. The collagen-induced effects are similar in assays with serum-free medium and in more physiological assays in which anti-CD3 mAb is replaced by a threshold concentration of Ag and irradiated autologous PBMC as APC. The responses are beta(1) integrin dependent and mediated largely by very late Ag (VLA) 1 and 2, as shown by their up-regulation on the T cell lines as compared with freshly purified resting PBL, and by the effects of blocking mAb. Reversed phase HPLC located the major costimulatory sequence(s) in the alpha1 chain of type I collagen, the structure of which was confirmed by amino acid sequencing. The results demonstrate the potential importance of type I collagen, an abundant extracellular matrix protein, in enhancing the activation of extravascular effector T cells in inflammatory disease, and point to a new immunotherapeutic target.  相似文献   

10.
Anti-CD3 mAb can activate T cells to help in B cell activation as detected by late events, such as maturation of B cells into Ig-secreting cells (IgSC), or by early events, such as B cell surface expression of the activation marker CD23. Two different anti-CD2 mAb each inhibited anti-CD3-induced T cell-dependent B cell activation in a dose-dependent fashion. Neither irradiation of the T cells prior to culture nor depletion of CD8+ cells abrogated the inhibitory effects of anti-CD2 mAb. Despite the ability of these anti-CD2 mAb to inhibit anti-CD3-induced IL2 production, addition of exogenous IL2 to anti-CD2 mAb-containing cultures could not fully reverse the inhibitory effects on IgSC generation. Furthermore, addition of various combinations of IL1, IL2, IL4, and IL6 or crude PBMC or monocyte culture supernatants also could not reverse anti-CD2-driven inhibition. In T cell-depleted cultures, anti-CD2 mAb had no effect on the ability of IL4 to induce B cell CD23 expression, confirming that anti-CD2 mAb had no direct effect on B cells. However, in cultures containing T+ non-T cells, anti-CD2 mAb did partially inhibit IL4-induced B cell CD23 expression. Taken together, these observations demonstrate that certain CD2 ligands can modulate T cell-dependent B cell activation by a mechanism which, at least in part, involves a direct effect by the CD2 ligand on the T cell itself.  相似文献   

11.
Y Sato  S Nagata  M Takiguchi 《PloS one》2012,7(8):e42776
Humanized mice are expected to be useful as small animal models for in vivo studies on the pathogenesis of infectious diseases. However, it is well known that human CD8(+) T cells cannot differentiate into effector cells in immunodeficient mice transplanted with only human CD34(+) hematopoietic stem cells (HSCs), because human T cells are not educated by HLA in the mouse thymus. We here established HLA-B*51:01 transgenic humanized mice by transplanting human CD34(+) HSCs into HLA-B*51:01 transgenic NOD/SCID/Jak3(-/-) mice (hNOK/B51Tg mice) and investigated whether human effector CD8(+) T cells would be elicited in the mice or in those infected with HIV-1 NL4-3. There were no differences in the frequency of late effector memory and effector subsets (CD27(low)CD28(-)CD45RA(+/-)CCR7(-) and CD27(-)CD28(-)CD45RA(+/-)CCR7(-), respectively) among human CD8(+) T cells and in that of human CD8(+) T cells expressing CX3CR1 and/or CXCR1 between hNOK/B51Tg and hNOK mice. In contrast, the frequency of late effector memory and effector CD8(+) T cell subsets and of those expressing CX3CR1 and/or CXCR1 was significantly higher in HIV-1-infected hNOK/B51Tg mice than in uninfected ones, whereas there was no difference in that of these subsets between HIV-1-infected and uninfected hNOK mice. These results suggest that hNOK/B51Tg mice had CD8(+) T cells that were capable of differentiating into effector T cells after viral antigen stimulation and had a greater ability to elicit effector CD8(+) T cells than hNOK ones.  相似文献   

12.
The primary effector cells of contact hypersensitivity (CHS) responses to dintrofluorobenzene (DNFB) are IFN-gamma-producing CD8(+) T cells, whereas CD4(+) T cells regulate the magnitude and duration of the response. The requirement for CD40-CD154 engagement during CD8(+) and CD4(+) T cell priming by hapten-presenting Langerhans cells (hpLC) is undefined and was tested in the current study. Similar CHS responses to DNFB were elicited in wild-type and CD154(-/-) animals. DNFB sensitization of CD154(-/-) mice primed IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells. However, anti-CD154 mAb MR1 given during hapten sensitization inhibited hapten-specific CD8(+), but not CD4(+), T cell development and the CHS response to challenge. F(ab')(2) of MR1 failed to inhibit CD8(+) T cell development and the CHS response suggesting that the mechanism of inhibition is distinct from that of CD40-CD154 blockade. Furthermore, anti-CD154 mAb did not inhibit CD8(+) T cell development and CHS responses in mice depleted of CD4(+) T cells or in CD4(-/-) mice. During in vitro proliferation assays, hpLC from mice treated with anti-CD154 mAb during DNFB sensitization were less stimulatory for hapten-primed T cells than hpLC from either control mice or mice depleted of CD4(+) T cells before anti-CD154 mAb administration. These results demonstrate that development of IFN-gamma-producing CD8(+) T cells and the CHS response are not dependent on CD40-CD154 interactions. This study proposes a novel mechanism of anti-CD154 mAb-mediated inhibition of CD8(+) T cell development where anti-CD154 mAb acts indirectly through CD4(+) T cells to impair the ability of hpLC to prime CD8(+) T cells.  相似文献   

13.
Humans who have inherited the human class I major histocompatibility allele HLA-B27 have a markedly increased risk of developing the multi-organ system diseases termed spondyloarthropathies. To investigate the role of B27 in these disorders, we introduced the B27 and human beta 2-microglobulin genes into rats, a species known to be quite susceptible to experimentally induced inflammatory disease. Rats from one transgenic line spontaneously developed inflammatory disease involving the gastrointestinal tract, peripheral and vertebral joints, male genital tract, skin, nails, and heart. This pattern of organ system involvement showed a striking resemblance to the B27-associated human disorders. These results establish that B27 plays a central role in the pathogenesis of the multi-organ system processes of the spondyloarthropathies. Elucidation of the role of B27 should be facilitated by this transgenic model.  相似文献   

14.
15.
16.
Three monoclonal antibodies (mAb) recognizing the CD3 (T3) surface complex each induced B cell differentiation (as measured by PFC generation) in cultures containing T + non-T cells. Irradiation of the T cells before culture usually augmented the PFC response. An IgG2a mAb (454) induced PFC in all donors tested, whereas two IgG1 mAb (147 and 446) induced PFC in only 80% of the donors tested. This heterogeneity in PFC response to IgG1 anti-CD3 mAb strictly paralleled the heterogeneity in proliferative response to IgG1 anti-CD3 mAb and was governed by cells within the non-T population. In IgG1 anti-CD3 high responders (HR), all anti-CD3 mAb tested induced Tac expression. In IgG1 anti-CD3 low responders (LR), mAb 454 induced Tac expression, but mAb 147 did not. However, when the cultures were supplemented with exogenous interleukin 2, Tac expression and PFC generation in response to mAb 147 was similar to the response to mAb 454 in both HR and LR. The addition of anti-Tac to the cultures partially inhibited anti-CD3-induced PFC generation. These studies indicate that anti-CD3 mAb can lead to B cell differentiation under appropriate experimental conditions and may be valuable in studying polyclonal T cell-dependent B cell differentiation in normal and disease states.  相似文献   

17.
The efficacy of B cell-depletion therapy in rheumatoid arthritis has driven interest in understanding the mechanism. Because the decrease in autoantibodies in rheumatoid arthritis does not necessarily correlate with clinical outcome, other mechanisms may be operative. We previously reported that in proteoglycan-induced arthritis (PGIA), B cell-depletion inhibits autoreactive T cell responses. Recent studies in B cell-depletion therapy also indicate a role for B cells in suppressing regulatory mechanisms. In this study, we demonstrate that B cells inhibited both the expansion and function of T regulatory (Treg) cells in PGIA. Using an anti-CD20 mAb, we depleted B cells from mice with PGIA and assessed the Treg cell population. Compared to control Ab-treated mice, Treg cell percentages were elevated in B cell-depleted mice, with a higher proportion of CD4(+) T cells expressing Foxp3 and CD25. On a per-cell basis, CD4(+)CD25(+) cells from B cell-depleted mice expressed increased amounts of Foxp3 and were significantly more suppressive than those from control Ab-treated mice. The depletion of Treg cells with an anti-CD25 mAb concurrent with B cell-depletion therapy restored the severity of PGIA to levels equal to untreated mice. Although titers of autoantibodies did not recover to untreated levels, CD4(+) T cell recall responses to the immunizing Ag returned as measured by T cell proliferation and cytokine production. Thus, B cells have the capacity to regulate inflammatory responses by enhancing effector T cells along with suppressing Treg cells.  相似文献   

18.
Chronic administration of anti-CD4 mAb prevents autoimmune disease in NZB/NZW F1 (B/W) mice. This may be due either to CD4 cell depletion or to inhibition of CD4 cell function. To evaluate the relative importance of these mechanisms, we devised a system in which the consequences of cell depletion could be analyzed independent of the inhibitory effects of chronic mAb therapy. This was accomplished by performing adult thymectomy before mAb administration. Specifically, female B/W mice underwent thymectomy or sham thymectomy at age 6 wk, followed at age 3 mo by a short course of either anti-CD4 (2 mg/wk for 3 wk) or saline. Treatment with anti-CD4 depleted 90% of circulating CD4 cells, but a small subpopulation (10%) of CD4 cells was refractory to depletion. In non-thymectomized mice, the CD4 population gradually reconstituted after cessation of therapy. In contrast, in thymectomized mice, recovery of CD4 cells was prevented by the absence of the thymus. Despite the striking reduction in CD4 cells in thymectomized mice, severe autoimmune disease developed, with autoantibody levels, proteinuria, and mortality comparable with non-thymectomized, nondepleted controls. The unexpected development of lupus nephritis in thymectomized, CD4-depleted B/W mice suggested that the thymus might be required to achieve the benefits of therapy with anti-CD4. To exclude this possibility, we demonstrated that chronic therapy with anti-CD4 prevents autoimmunity in thymectomized B/W mice. These findings imply that: 1) substantial depletion of CD4 T cells is not sufficient to suppress autoimmunity; 2) suppression of autoimmunity requires sustained functional inhibition of CD4 T cells; and 3) a small subpopulation of CD4 cells that is refractory to depletion by anti-CD4 is sufficient to promote the full expression of murine lupus in B/W mice.  相似文献   

19.
In TCR-alphabeta transgenic mice, CD4-CD8- TCR-alphabeta+ (alphabeta DN) cells arise in the absence of positively selecting MHC molecules and are resistant to clonal deletion in Ag-expressing mice. In this study the activation requirements and functional properties of alphabeta double-negative (DN) cells were compared with those of positively selected CD8+ cells expressing equivalent levels of the same MHC class I-restricted transgenic TCR. We found that positively selected CD8+ cells required a lower density of the antigenic ligand for optimal proliferative responses compared with alphabeta DN cells derived from nonpositively selecting mice. However, when the CD8 coreceptor on CD8+ cells was blocked with an anti-CD8 mAb, both alphabeta DN and CD8+ cells exhibited the same dose-response curve to the antigenic ligand and the same dependence on CD28/B7 costimulation. Positively selected CD8+ cells also differed from alphabeta DN cells in that they differentiated into more efficient killers and IL-2 producers after Ag stimulation, even after CD8 blockade. However, Ag-activated alphabeta DN and CD8+ cells were equally efficient in producing IFN-gamma, suggesting that this functional property is independent of positive selection. We also found that alphabeta DN cells recovered from the lymph nodes of Ag-expressing mice were functionally anergic. This anergic state was associated with defective proliferation and IL-2 production in response to Ag stimulation. These observations indicate that alphabeta DN cells can be anergized in vivo by physiological levels of the antigenic ligand.  相似文献   

20.
Studies in Jurkat cells have shown that combined stimulation through the TCR and CD28 is required for activation of c-Jun N-terminal kinase (JNK), suggesting that JNK activity may mediate the costimulatory function of CD28. To examine the role of JNK signaling in CD28 costimulation in normal T cells, murine T cell clones and CD28(+/+) or CD28(-/-) TCR transgenic T cells were used. Although ligation with anti-CD28 mAb augmented JNK activation in Th1 and Th2 clones stimulated with low concentrations of anti-CD3 mAb, higher concentrations of anti-CD3 mAb alone were sufficient for JNK activation even in the absence of anti-CD28. JNK activity was comparably induced in both CD28(+/+) and CD28(-/-) 2C/recombinase-activating gene 2(RAG2)(-/-) T cells stimulated with anti-CD3 mAb alone, and with L(d)/peptide dimers, a direct alphabeta TCR ligand. Moreover, JNK activation was also detected in 2C/RAG2(-/-) T cells stimulated with P815 cells that express the relevant alloantigen L(d) whether or not B7-1 was coexpressed. However, IL-2 production by both Th1 clones and CD28(+/+) 2C/RAG2(-/-) T cells was detected only upon TCR and CD28 coengagement. Thus, CD28 coligation is not necessary, and stimulation through the TCR is sufficient, for JNK activation in normal murine T cells. The concept that JNK mediates the costimulatory function of CD28 needs to be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号