首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of calcium on the quantal content of nerve-evoked endplate currents (EPC) and on the temporal parameters of quantal release were studied in the frog neuromuscular synapse using the method of "subtractions". It was shown that under physiological conditions quanta generating multiquantal postsynaptic responses were released nonsynchronously because of a considerable variability of latencies of the uniquantal responses forming multiquantal EPC. Different calcium dependences for EPCs quantal content and time course of the quantal release were revealed. The average quantal content grew exponentially with the increase in calcium concentration from 0.4 to 1.8 mmol/L, whereas the release synchronicity reached the maximum at 1 mmol/L calcium. It was suggested that the changes in the synchronicity of the evoked release were one of the mechanisms of the synaptic plasticity.  相似文献   

2.
Fast- and slow-rising AMPA receptor-mediated EPSCs occur at central synapses. Fast-rising EPSCs are thought to be mediated by rapid local release of glutamate. However, two controversial mechanisms have been proposed to underlie slow-rising EPSCs: prolonged local release of transmitter via a fusion pore, and spillover of transmitter released rapidly from distant sites. We have investigated the mechanism underlying slow-rising EPSCs and the diffusion coefficient of glutamate in the synaptic cleft (Dglut) at cerebellar mossy fiber-granule cell synapses using a combination of diffusion modeling and patch-clamp recording. Simulations show that modulating Dglut has different effects on the peak amplitudes and time courses of EPSCs mediated by these two mechanisms. Slowing diffusion with the macromolecule dextran slowed slow-rising EPSCs and had little effect on their amplitude, indicating that glutamate spillover underlies these currents. Our results also suggest that under control conditions Dglut is approximately 3-fold lower than in free solution.  相似文献   

3.
Excitatory postsynaptic currents (EPSCs) were studied in the CA1 pyramidal cells of rat hippocampal slices. Components mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) and by N-methyl-D-aspartate (NMDA) receptors were separated pharmacologically. Quantal parameters of AMPA and NMDA receptor-mediated EPSCs were obtained using both maximal likelihood and autocorrelation techniques. Enhancement of transmitter release with 4-aminopyridine caused a significant increase in quantal size of NMDA EPSC. This was accompanied by a slowing of the EPSC decay. The maximal number of quanta in the NMDA current was unchanged, while the probability of quantal event dramatically enhanced. In contrast, neither the quantal size nor the kinetics of AMPA EPSC was altered by 4-aminopyridine, while the maximal number of quanta increased. These changes in the quantal parameters are consistent with a transition to multivesicular release of the neurotransmitter. Spillover of excessive glutamate on the nonsynaptic areas of dendritic spines causes an increase in the quantal size of NMDA synaptic current. The difference in quantal behavior of AMPA and NMDA EPSCs implies that different mechanisms underlie their quantization: the additive response of nonsaturated AMPA receptors contrasts with the variable involvement of saturated intrasynaptic and nonsaturated extrasynaptic NMDA receptors.  相似文献   

4.
Freed MA  Smith RG  Sterling P 《Neuron》2003,38(1):89-101
In isolation, a presynaptic terminal generally releases quanta according to Poisson statistics, but in a circuit its release statistics might be shaped by synaptic interactions. We monitored quantal glutamate release from retinal bipolar cell terminals (which receive GABA-ergic feedback from amacrine cells) by recording spontaneous EPSCs (sEPSCs) in their postsynaptic amacrine and ganglion cells. In about one-third of these cells, sEPSCs were temporally correlated, arriving in brief bursts (10-55 ms) more often than expected from a Poisson process. Correlations were suppressed by antagonizing the GABA(C) receptor (expressed on bipolar terminals), and correlations were induced by raising extracellular calcium or osmolarity. Simulations of the feedback circuit produced "bursty" release when the bipolar cell escaped intermittently from inhibition. Correlations of similar duration were present in the light-evoked sEPSCs and spike trains of sluggish-type ganglion cells. These correlations were suppressed by antagonizing GABA(C) receptors, indicating that glutamate bursts from bipolar terminals induce spike bursts in ganglion cells.  相似文献   

5.
Storage and release of ATP from astrocytes in culture   总被引:23,自引:0,他引:23  
ATP is released from astrocytes and is involved in the propagation of calcium waves among them. Neuronal ATP secretion is quantal and calcium-dependent, but it has been suggested that ATP release from astrocytes may not be vesicular. Here we report that, besides the described basal ATP release facilitated by exposure to calcium-free medium, astrocytes release purine under conditions of elevated calcium. The evoked release was not affected by the gap-junction blockers anandamide and flufenamic acid, thus excluding purine efflux through connexin hemichannels. Sucrose-gradient analysis revealed that a fraction of ATP is stored in secretory granules, where it is accumulated down an electrochemical proton gradient sensitive to the v-ATPase inhibitor bafilomycin A(1). ATP release was partially sensitive to tetanus neurotoxin, whereas glutamate release from the same intoxicated astrocytes was almost completely impaired. Finally, the activation of metabotropic glutamate receptors, which strongly evokes glutamate release, was only slightly effective in promoting purine secretion. These data indicate that astrocytes concentrate ATP in granules and may release it via a regulated secretion pathway. They also suggest that ATP-storing vesicles may be distinct from glutamate-containing vesicles, thus opening up the possibility that their exocytosis is regulated differently.  相似文献   

6.
The effects of endogenous mu-opioid ligands, endomorphins, on Adelta-afferent-evoked excitatory postsynaptic currents (EPSCs) were studied in substantia gelatinosa neurons in spinal cord slices. Under voltage-clamp conditions, endomorphins blocked the evoked EPSCs in a dose-dependent manner. To determine if the block resulted from changes in transmitter release from glutamatergic synaptic terminals, the opioid actions on miniature excitatory postsynaptic currents (mEPSCs) were examined. Endomorphins (1 microM) reduced the frequency but not the amplitude of mEPSCs, suggesting that endomorphins directly act on presynaptic terminals. The effects of endomorphins on the unitary (quantal) properties of the evoked EPSCs were also studied. Endomorphins reduced unitary content without significantly changing unitary amplitude. These results suggest that in addition to presynaptic actions on interneurons, endomorphins also inhibit evoked EPSCs by reducing transmitter release from Adelta-afferent terminals.  相似文献   

7.
A quantum of transmitter may be released upon the arrival of a nerve impulse if the influx of calcium ions through a nearby voltage-dependent calcium channel is sufficient to activate the vesicle-associated calcium sensor protein that triggers exocytosis. A synaptic vesicle, together with its calcium sensor protein, is often found complexed with the calcium channel in active zones to form what will be called a "synaptosecretosome." In the present work, a stochastic analysis is given of the conditions under which a quantum is released from the synaptosecretosome by a nerve impulse. The theoretical treatment considers the rise of calcium at the synaptosecretosome after the stochastic opening of a calcium channel at some time during the impulse, followed by the stochastic binding of calcium to the vesicle-associated protein and the probability of this leading to exocytosis. This allows determination of the probabilities that an impulse will release 0, 1, 2,... quanta from an active zone, whether this is in a varicosity, a bouton, or a motor endplate. A number of experimental observations of the release of transmitter at the active zones of sympathetic varicosities and boutons as well as somatic motor endplates are described by this analysis. These include the likelihood of the secretion of only one quantum at an active zone of endplates and of more than one quantum at an active zone of a sympathetic varicosity. The fourth-power relationship between the probability of transmitter release at the active zones of sympathetic varicosities and motor endplates and the external calcium concentration is also explained by this approach. So, too, is the fact that the time course of the increased rate of quantal secretion from a somatic active zone after an impulse is invariant with changes in the amount of calcium that enters through its calcium channel, whether due to changes consequent on the actions of autoreceptor agents such as adenosine or to facilitation. The increased probability of quantal release that occurs during F1 facilitation at the active zones of motor endplates and sympathetic boutons is predicted by the residual binding of calcium to a high-affinity site on the vesicle-associated protein. The concept of the stochastic operation of a synaptosecretosome can accommodate most phenomena involving the release of transmitter quanta at these synapses.  相似文献   

8.
We simulated the diffusion of glutamate, following the release of a single vesicle from a pre-synaptic terminal, in the synaptic cleft by using a Brownian diffusion model based on Langevin equations. The synaptic concentration time course and the time course of quantal excitatory post-synaptic current have been analyzed. The results showed that they depend on the number of receptors located at post-synaptic membrane. Their time course are dependent both on the total number of the post-synaptic receptors and on the eccentricity of the pre-synaptic glutamate vesicle.  相似文献   

9.
Transient currents occur at rest in cortical neurones that reflect the quantal release of transmitters such as glutamate and gamma-aminobutyric acid (GABA). We found a bimodal amplitude distribution for spontaneously occurring inward currents recorded from mouse pyramidal neurones in situ, in acutely isolated brain slices superfused with picrotoxin. Larger events were blocked by glutamate receptor (AMPA, kainate) antagonists; smaller events were partially inhibited by P2X receptor antagonists suramin and PPADS. The decay of the larger events was selectively prolonged by cyclothiazide. Stimulation of single intracortical axons elicited quantal glutamate-mediated currents and also quantal currents with amplitudes corresponding to the smaller spontaneous inward currents. It is likely that the lower amplitude spontaneous events reflect packaged ATP release. This occurs with a lower probability than that of glutamate, and evokes unitary currents about half the amplitude of those mediated through AMPA receptors. Furthermore, the packets of ATP appear to be released from vesicle in a subset of glutamate-containing terminals.  相似文献   

10.
Multivesicular release at climbing fiber-Purkinje cell synapses.   总被引:10,自引:0,他引:10  
J I Wadiche  C E Jahr 《Neuron》2001,32(2):301-313
Synapses driven by action potentials are thought to release transmitter in an all-or-none fashion; either one synaptic vesicle undergoes exocytosis, or there is no release. We have estimated the glutamate concentration transient at climbing fiber synapses on Purkinje cells by measuring the inhibition of excitatory postsynaptic currents (EPSCs) produced by a low-affinity competitive antagonist of AMPA receptors, gamma-DGG. The results, together with simulations using a kinetic model of the AMPA receptor, suggest that the peak glutamate concentration at this synapse is dependent on release probability but is not affected by pooling of transmitter released from neighboring synapses. We propose that the mechanism responsible for the elevated glutamate concentration at this synapse is the simultaneous release of multiple vesicles per site.  相似文献   

11.
12.
The time course of most quantal currents recorded with a small diameter electrode placed over visualized varicosities of sympathetic nerve terminals that secrete ATP was determined: these had a time to reach 90% of peak of 1.3-1.8 ms and a time constant of decay of 12-18 ms; they were unaffected by blocking ectoenzymes or the uptake of adenosine. Monte Carlo methods were used to analyze the stochastic interaction between ATP, released in a packet from a varicosity, and the underlying patch of purinoceptors, to reconstitute the time course of the quantal current. This leads to certain restrictions on the possible number of ATP molecules in a quantum (about 1000) and the density of purinoceptors at the junctions (about 1000 microns-1), given the known geometry of the junction and the kinetics of ATP action. The observed quantal current has a relatively small variability (coefficient of variation < 0.1), and this stochastic property is reproduced for a given quantum of ATP. Potentiation effects (of about 12%) occur if two quanta are released from the same varicosity because the receptor patch is not saturated even by the release of two quanta. The simulations show that quantal currents have a characteristically distinct shape for varicosities with different junctional cleft widths (50-200 nm). Finally, incorporation of an ectoenzyme with the known kinetics of ATPase into the junctional cleft allows for a quantal current of the observed time course, provided the number of ATP molecules in a quantum is increased over the number in the absence of the ATPase.  相似文献   

13.
The relative contribution of kainate receptors to ongoing glutamatergic activity is at present unknown. We report the presence of spontaneous, miniature, and minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) that are mediated solely by kainate receptors (EPSC(kainate)) or by both AMPA and kainate receptors (EPSC(AMPA/kainate)). EPSC(kainate) and EPSC(AMPA/kainate) are selectively enriched in CA1 interneurons and mossy fibers synapses of CA3 pyramidal neurons, respectively. In CA1 interneurons, the decay time constant of EPSC(kainate) (circa 10 ms) is comparable to values obtained in heterologous expression systems. In both hippocampal neurons, the quantal release of glutamate generates kainate receptor-mediated EPSCs that provide as much as half of the total glutamatergic current. Kainate receptors are, therefore, key players of the ongoing glutamatergic transmission in the hippocampus.  相似文献   

14.
Liu G  Choi S  Tsien RW 《Neuron》1999,22(2):395-409
To understand the elementary unit of synaptic communication between CNS neurons, one must know what causes the variability of quantal postsynaptic currents and whether unitary packets of transmitter saturate postsynaptic receptors. We studied single excitatory synapses between hippocampal neurons in culture. Focal glutamate application at individual postsynaptic sites evoked currents (I(glu)) with little variability compared with quantal excitatory postsynaptic currents (EPSCs). The maximal I(glu) was >2-fold larger than the median EPSC. Thus, variations in [glu]cleft are the main source of variability in EPSC size, and glutamate receptors are generally far from saturation during quantal transmission. This conclusion was verified by molecular antagonism experiments in hippocampal cultures and slices. The general lack of glutamate receptor saturation leaves room for increases in [glu]cleft as a mechanism for synaptic plasticity.  相似文献   

15.
16.
The subcellular localization of catecholamines and ascorbic acid in cultured bovine adrenal chromaffin cells was studied by permeabilizing the cells with digitonin, a steroid glycoside. Catecholamine release from permeabilized chromaffin cells was dependent on the free calcium concentration and the temperature of the incubation mixture. By contrast, [14C]ascorbic acid, preloaded into the cells, was released by digitonin treatment in a manner independent of the concentration of free calcium and with only moderate regard to the incubation temperature. The sensitivity of ascorbic acid release to digitonin treatment was identical to that of calcium-dependent catecholamine release. These results thus suggest that ascorbic acid preloaded into the cells may directly efflux from the cell cytoplasm as a result of the permeabilization of the plasma membrane. Dimethylepinephrine, a permanently positively charged catecholamine analog which is known to be excluded from vesicular fractions, was also released by digitonin treatment in a manner independent of calcium. The time course of dimethylepinephrine release was very similar to that of ascorbic acid release. Thus, newly accumulated ascorbic acid in chromaffin cells may be localized to a free pool in the cell cytoplasm rather than in a vesicular compartment.  相似文献   

17.
A hair cell (octavolateralis mechanoreceptor cell) sheet preparation from the trout saccular macula was superfused with bicarbonate-based physiological saline. Among the primary amine-containing compounds resolved by cation-exchange HPLC, glutamate alone was released in a statistically significant manner with elevation of extracellular [K+] from 3.5 to 14 mM in the presence of 1.8 mM calcium. Release of glutamate averaged 10.9 +/- 2.5 pmol (mean +/- SEM) over a 10-min period for a hair cell sheet preparation representing 20 micrograms of cell protein. No potassium-evoked release of glutamate was observed in 0 mM calcium/10 mM magnesium saline, suggesting calcium dependency. Because the sheet preparation, by the method of its isolation, contained only the hair cell as the intact cell type, release of glutamate, induced by relatively small increases in extracellular potassium, can be attributed directly to the receptor cell. The specific release of glutamate and its block by magnesium are consistent with the hypothesis that glutamate is one neurotransmitter/neuromodulator mediating receptoneural transmission in the octavolateralis periphery.  相似文献   

18.
Evoked release of [3H]-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and [3H]-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10–100 M glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 M kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.  相似文献   

19.
R Y Pun 《Peptides》1982,3(3):249-257
The postsynaptic action of the classical neurotransmitter noradrenaline (NA), the reversal potential of the excitatory postsynaptic potential (EPSP) and the effects of divalent cations on EPSPs in dissociated spinal cord cultures are described. In co-cultures of locus coeruleus explant and spinal cord cells, it was found that NA could mimic the response evoked by stimulation of the explant on the spinal cord cells surrounding the explants. Both depolarization and hyperpolarization responses were observed. On a few occasions, a biphasic response consisting of a hyperpolarization followed by a depolarization was observed. The depolarizing response was associated with an increase in input resistance of the membrane. This would suggest that NA may have a facilitatory effect on synaptic transmission. The depolarizations were antagonized by the α-antagonist piperoxane, and were not affected by the β-antagonist propranolol at the concentrations tested, indicating that the receptor mediating these responses is of the α-type. The reversal potential for dorsal root ganglion and spinal cord cells was +8±3.2 mV (mean±s.e.m.), and that for spinal cord and spinal cord cells was ?4±4.3 mV (mean±s.e.m.). These values are different from those previously reported for glutamate in spinal cord cultures. The effects of high and low concentrations of calcium ions on quantal output and mean quantal amplitude or quantal size of the EPSP were further examined. As expected, the cation had an effect mainly on the release process: increasing the concentration of calcium increased the amount of neurotransmitter released, while reducing the concentration of calcium reduced release. Quantal size was slightly or not affected by alteration of external calcium. In comparing the postsynaptic actions of classical neurotransmitters to those of peptides, there is apparently no evidence that the actions of the two groups of agents on central neurons are different. It appears, however, that the peptides generally elicit responses at lower concentrations than the classical neurotransmitters. Further experimentation is required to fully elucidate the actions of peptides on mammalian central neurons.  相似文献   

20.
This study investigated the presence of cell membrane docking proteins synaptosomal‐associated protein, 25 and 23 kD (SNAP‐25 and SNAP‐23) in satellite glial cells (SGCs) of rat trigeminal ganglion; whether cultured SGCs would release glutamate in a time‐ and calcium‐dependent manner following calcium‐ionophore ionomycin stimulation; and if botulinum neurotoxin type A (BoNTA), in a dose‐dependent manner, could block or decrease vesicular release of glutamate. SGCs were isolated from the trigeminal ganglia (TG) of adult Wistar rats and cultured for 7 days. The presence of SNAPs in TG sections and isolated SGCs were investigated using immunohistochemistry and immunocytochemistry, respectively. SGCs were stimulated with ionomycin (5 μM for 4, 8, 12 and 30 min.) to release glutamate. SGCs were then pre‐incubated with BoNTA (24 hrs with 0.1, 1, 10 and 100 pM) to investigate if BoNTA could potentially block ionomycin‐stimulated glutamate release. Glutamate concentrations were measured by ELISA. SNAP‐25 and SNAP‐23 were present in SGCs in TG sections and in cultured SGCs. Ionomycin significantly increased glutamate release from cultured SGCs 30 min. following the treatment (P < 0.001). BoNTA (100 pM) significantly decreased glutamate release (P < 0.01). Results from this study demonstrated that SGCs, when stimulated with ionomycin, released glutamate that was inhibited by BoNTA, possibly through cleavage of SNAP‐25 and/or SNAP‐23. These novel findings demonstrate the existence of vesicular glutamate release from SGCs, which could potentially play a role in the trigeminal sensory transmission. In addition, interaction of BoNTA with non‐neuronal cells at the level of TG suggests a potential analgesic mechanism of action of BoNTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号