首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic GMP inhibits the slow inward Ca current of cardiac cells. This effect could be due to a cyclic GMP-mediated phosphorylation of the Ca channel (or some protein modifying Ca channel activity), or alternatively, to enhanced degradation of cyclic AMP owing to stimulation of a phosphodiesterase by cyclic GMP. To test the latter possibility, we examined the effect of extracellular 8-bromo-cyclic GMP on cyclic AMP levels in guinea pig papillary muscles, in parallel with electrophysiological experiments. Isoproterenol (10(-6) M) significantly increased the cyclic AMP levels and induced Ca-dependent slow action potentials. Superfusion with 8-bromo-cyclic GMP (10(-3) M) inhibited the slow action potentials induced by isoproterenol. However, muscles superfused with 8-bromo-cyclic GMP had cyclic AMP levels identical to those of muscles superfused with isoproterenol alone. Similarly, 8-bromo-cyclic GMP had no effect on the increase in cyclic AMP levels of muscles treated with forskolin (10(-6) M) or histamine (10(-6) M). We conclude that the inhibitory effect of cyclic GMP on slow Ca channels in guinea pig ventricular cells is not due to a decrease in the cyclic AMP levels. We hypothesize that a cyclic GMP-mediated phosphorylation is the most likely explanation for the Ca channel inhibition observed in this preparation.  相似文献   

2.
The role of cyclic adenosine 3',5'-monophosphate (cAMP) in inducing bone resorption was studied in neonatal mouse calvaria in vitro. Forskolin, a stimulator of adenylate cyclase, increased the medium calcium concentration at 96 hr of incubation, indicating enhanced bone resorption. Bone resorption was observed between 1 X 10(-4) and 1 X 10(-6) M forskolin; the maximal effect was at 1 X 10(-5) M and there was no effect at 1 X 10(-7) M. Lactic acid release was increased during the 96 hr of incubation in proportion to the calcium release in the media. The bone acid phosphatase activity was increased and the alkaline phosphatase activity was decreased. Bone carbonic anhydrase activity was increased more than twofold. Forskolin-induced bone resorption was significantly but incompletely inhibited by 10(-4) M acetazolamide, a carbonic acid anhydrase inhibitor. These findings support the concept that carbonic anhydrase plays a significant role in bone resorption.  相似文献   

3.
Mouse neuroblastoma X embryonic Chinese hamster brain explant hybrid cell line (NCB-20) forms functional synapses when intracellular cyclic AMP levels are elevated for a prolonged period of time. NCB-20 cells were labeled with [32P]orthophosphate under conditions where 2-chloroadenosine gave maximum increases of 32P incorporation into tyrosine hydroxylase in nerve growth factor dibutyryl cyclic AMP-differentiated PC12 (pheochromocytoma) cells. When NCB-20 cells were exposed to activators [5-hydroxytryptamine (5-HT), prostaglandin E1, or forskolin], resulting in activation of cyclic AMP-dependent protein kinase, increased 32P incorporation into two major proteins [130 kilodaltons (kDa) and 90 kDa] occurred. 5-HT (in the presence of phosphodiesterase inhibitor, isobutylmethylxanthine) gave a three- to fourfold increase, and forskolin a four- to sevenfold increase in 32P incorporation into the 90-kDa protein. [D-Ala2,D-Leu5]-enkephalin, which decreased cyclic AMP levels and reversed the 2-chloroadenosine-stimulated phosphorylation of tyrosine hydroxylase in differentiated PC12 cells, also reversed the stimulation of phosphorylation of the 90-kDa protein in NCB-20 cells. Pretreatment of NCB-20 cells with a calcium ionophore, A23187, gave increased phosphorylation of the 90- and 130-kDa proteins, but phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (tumor promoting agent), cell depolarization with high K+, or pretreatment with dibutyryl cyclic GMP had no effect on phosphorylation of these proteins. In contrast, phosphorylation of an 80-kDa protein was decreased by forskolin, but increased following activation of the calcium/phospholipid-dependent kinase with tumor promoting agent. Neither the 90-kDa nor the 80-kDa protein showed any immunological cross-reactivity with synapsin, a major synaptic protein known to be phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase, but not calcium/phospholipid-dependent protein kinase. This suggests that in NCB-20 cells, several unique proteins can be phosphorylated by cyclic AMP-dependent protein kinase in response to hormonal elevation of cyclic AMP levels. In contrast, an 80-kDa protein is the primary substrate for calcium/phospholipid-dependent protein kinase, and its phosphorylation is inhibited by agents that elevate cyclic AMP levels and thereby activate cyclic AMP-dependent protein kinase.  相似文献   

4.
The effects of bethanidine sulphate, a pharmacological analog of the cardiac antibrillatory drug, bretylium tosylate, were studied on action potentials (APs) and K+, Na+, and Ca2+ currents of single cultured embryonic chick heart cells using the whole-cell current clamp and voltage clamp technique. Extracellular application of bethanidine (3 X 10(-4) M) increased the overshoot and the duration of the APs and greatly decreased the outward K+ current (IK) and potentiated the inward fast Na+ currents (INa) and the inward slow calcium current (ICa). However, intracellular introduction of bethanidine (10(-4) M) blocked INa. In isolated atria of rat, bethanidine increased the force of contraction in a dose-dependent manner. These findings suggest that when applied extracellularly, bethanidine exerts a potentiating effect on the myocardial fast Na+ current and slow Ca2+ current and an inhibitory effect of IK. The positive inotropic effect of bethanidine could be due, at least in part, to an increase of Ca2+ influx via the slow Ca2+ channel and the Na-Ca exchange. It is suggested that the decrease of IK by bethanidine may account for its antifibrillatory action.  相似文献   

5.
The effect of the antianginal drug nonachlazine displaying antiarrhythmic properties on transmembrane ionic currents in the frog atrial fibers was studied in experiments on isolated trabeculae of the frog atria. The transmembrane ionic currents were measured by a voltage clamp technique based on a double sucrose gap arrangement. Nonachlazine (1.03 X 10(-5) mol/l) decreased the amplitude of the fast inward current whatever the magnitude of membrane potential. The drug inhibited the slow inward current and prevented the adrenaline-increased permeability of the slow sodium-calcium channel if external sodium ions were replaced by choline chloride. Nonachlazine (1.03 X 10(-5) mol/l) diminished the amplitude of the inward ionic current in a calcium-free medium as well. The stimulatory effect of prostacycline (2 X 10(-7) mol/l) on the fast inward ionic current was inhibited by nonachlazine. The data obtained suggest that the antiarrhythmic effect of nonachlazine might be linked with the inhibition of the fast sodium inward current and the slow calcium inward current.  相似文献   

6.
In atrial muscle, acetylcholine (ACh) decreases the slow inward current (Isi) and increases the time-independent outward K+ current. However, in ventricular muscle, ACh produces a marked negative inotropic effect only in the presence of positive inotropic agents that elevate cyclic adenosine monophosphate (AMP). A two-microelectrode voltage-clamp method was used on cultured reaggregates of cells from 16--20-d-old embryonic chick ventricles to determine the effects of ACh on Isi and outward current during beta-adrenergic stimulation. Only double penetrations displaying low-resistance coupling were voltage-clamped. Cultured reaggregates are advantageous because their small size (50-- 250 microns) permits better control of membrane potential and adequate space clamp. Tetrodotoxin (10(-6) M) and a holding potential of --50 to --40 mV were used to eliminate the fast Na+ current. Depolarizing voltage steps above --40 mV caused a slow inward current to flow that was sensitive to changes in [Ca]o and was depressed by verapamil (10(- 6) M). Maximal Isi was obtained at --10 mV and the reversal potential was about +25 mV. Isoproterenol (10(-6) M) increased Isi at all clamp potentials. Subsequent addition of ACh (10(-6) M) rapidly reduced Isi to control values (before isoproterenol) without a significant effect on the net outward current measured at 300 ms. The effects of ACh were reversed by muscarinic blockade with atropine (5 X 10(-6) M). We conclude that the anti-adrenergic effects of ACh in ventricular muscle are mediated by a reduction in Ca2+ influx during excitation.  相似文献   

7.
The cellular and molecular effects of forskolin, a direct, nonhormonal activator of adenylate cyclase, were assessed on the enzyme secretory process in dispersed rat pancreatic acinar cells. Forskolin stimulated adenylate cyclase activity in the absence of guanyl nucleotide. It promoted a rapid and marked increase in cellular accumulation of cyclic AMP alone or in combination with vasoactive intestinal peptide (VIP) but was itself a weak pancreatic agonist and did not increase the secretory response to VIP or other cyclic AMP dependent agonists. Somatostatin was a partial antagonist of forskolin stimulated cyclic AMP synthesis and forskolin plus cholecystokinin-octapeptide (CCK-OP) induced amylase release. Forskolin potentiated amylase secretion in response to calcium-dependent agonists such as CCK-OP, carbachol and A-23187, but did not affect the ability of CCK-OP and (or) carbachol to mobilize 45Ca from isotope preloaded cells; forskolin alone did not stimulate 45Ca release. In calcium-poor media, the secretory response to forskolin and CCK-OP was reduced in a both absolute and relative manner. The data suggests that calcium plays the primary role as intracellular mediator of enzyme secretion and that the role of cyclic AMP may be to modulate the efficiency of calcium utilization.  相似文献   

8.
The effects of forskolin on differentiation of osteoblastic cells (clone MC3T3-E1) cultured in alpha-minimum essential medium containing 0.1% bovine serum albumin were investigated by assays of intracellular cyclic AMP level and alkaline phosphatase activity in the cells. Forskolin increased cyclic AMP production in the cells in a dose-related manner, the maximum increase being 250-fold above that of the controls. Alkaline phosphatase activity in the cells was also elevated as early as 24 h and rose to nearly its maximum at 48 h. The elevation was dose-dependent, with a maximum increase at 5 X 10(-6) M forskolin. Forskolin and prostaglandin E2 showed a supraadditive effect on cyclic AMP production in the cells and had an additive effect on alkaline phosphatase activity, whereas forskolin and dibutyryl cyclic AMP had little additive effect on either cyclic AMP production or enzyme activity. These results suggest that cyclic AMP is closely linked to the differentiation of osteoblastic cells in vivo.  相似文献   

9.
Isolated ventricular myocytes of 3 to 5 weeks old rats were studied under conditions of intracellular perfusion and voltage clamp. The existence of two inward sodium currents with different TTX-sensitivities and different properties was shown. The fast sodium current was more sensitive to TTX (Kd about 8 X 10(-8) mol/l). The block of the slow sodium current by TTX was less specific (Kd about 7 X 10(-6) mol/l). There was an about four fold difference in the inactivation time constants between these currents. The maximum on the I-V curve of the slow sodium current was shifted along the voltage axis by about 15 mV in the positive direction as compared with that of the fast sodium current. A slow current carried by calcium ions was observed in sodium-free solution. The kinetics and TTX-sensitivity of this current were similar to those of the slow sodium current. The amplitude of this current was 15 to 20 times lower as compared with the slow sodium current observed in Na-containing solution with 10(-6) mol/l TTX (a concentration which completely blocked the fast sodium current). It is suggested that the slow voltage-gated TTX-sensitive channels described are not highly selective and pass both sodium and calcium ions.  相似文献   

10.
Forskolin (7 beta-acetoxy-8, 13-epoxy-1 alpha,6 beta,9 alpha-trihydroxy-labd-14-ene-11-one) induced both cyclic AMP production and lipolysis in intact fat cells, but stimulated lipolysis without increasing cyclic AMP at a concentration of 10(-5) M. Homogenization of fat cells elicited lipolysis without elevation of cyclic AMP. Forskolin did not stimulate lipolysis in the homogenate. Forskolin stimulated both cyclic AMP production and lipolysis in a cell-free system consisting of endogenous lipid droplets and a lipoprotein lipase-free lipase fraction prepared from fat cells. However, at a concentration of 10(-6) M, it induced lipolysis without increase in the cyclic AMP content in this cell-free system. In the cell-free system, homogenization of the lipid droplets resulted in marked increase in lipolysis to almost the same level as that with 10(-4) M forskolin without concomitant increase in cyclic AMP. Addition of forskolin to a cell-free system consisting of homogenized lipid droplets and lipase did not stimulate lipolysis further. Phosphodiesterase activities were found to be almost the same both in the presence and absence of forskolin in these reaction mixtures. Although 10(-3) M forskolin produced maximal concentrations of cyclic AMP: 6.7 x 10(-7) M in fat cells and 2.7 x 10(-7) M in the cell-free system, 10(-4) M cyclic AMP did not stimulate lipolysis in the cell-free system. In a cell-free system consisting of lipid droplets and the lipase, pyrophosphate inhibited forskolin-induced cyclic AMP production, but decreased forskolin-mediated lipolysis only slightly. Based on these results, mechanism of lipolytic action of forskolin was discussed.  相似文献   

11.
Cholinergic-mediated amylase release in mouse parotid acini was augmented by forskolin; the potency but not the maximal response to carbachol was altered. Amylase released by carbachol plus forskolin was dependent on extracellular calcium and was mimicked by the calcium ionophore, A23187 plus forskolin. Forskolin was also shown to enhance carbachol-stimulated 45Ca2+ uptake into isolated acini. Hydroxylamine, nitroprusside, and 8-bromo-c-GMP each in combination with forskolin mimicked the effects of carbachol plus forskolin on amylase release. In the presence of carbachol (10(-8)M) forskolin did not augment c-AMP levels. However, in the presence of carbachol (5 X 10(-7) M) or hydroxylamine (50 microM) forskolin did significantly augment c-AMP accumulation. These results suggest that calcium and c-GMP may mediate the augmentation of cholinergic-mediated amylase release by effects on c-AMP metabolism.  相似文献   

12.
The inactivation of calcium channels in mammalian pituitary tumor cells (GH3) was studied with patch electrodes under voltage clamp in cell-free membrane patches and in dialyzed cells. The calcium current elicited by depolarization from a holding potential of -40 mV passed predominantly through one class of channels previously shown to be modulated by dihydropyridines and cAMP-dependent phosphorylation (Armstrong and Eckert, 1987). When exogenous calcium buffers were omitted from the pipette solution, the macroscopic calcium current through those channels inactivated with a half time of approximately 10 ms to a steady state level 40-75% smaller than the peak. Inactivation was also measured as the reduction in peak current during a test pulse that closely followed a prepulse. Inactivation was largely reduced or eliminated by (a) buffering free calcium in the pipette solution to less than 10(-8) M; (b) replacing extracellular calcium with barium; (c) increasing the prepulse voltage from +10 to +60 mV; or (d) increasing the intracellular concentration of cAMP, either 'directly' with dibutyryl-cAMP or indirectly by activating adenylate cyclase with forskolin or vasoactive intestinal peptide. Thus, inactivation of the dihydropyridine-sensitive calcium channels in GH3 cells only occurs when membrane depolarization leads to calcium ion entry and intracellular accumulation.  相似文献   

13.
Electrical and mechanical responses of frog atrial trabeculae were studied simultaneously using the double-sucrose gap method. Action potentials and twitch tension could be successively generated in fibers in which the slow inward calcium channel current was not observed. As a rule, this could be obtained in the course of a long experiment (3 to 4 hours). Peak tension was shown to increase monotonically with membrane potential in these preparations. In preparations with the slow inward current the total peak tension could be separated into two components. The first component (tonic) monotonically increased with the membrane potential and was probably related to Na/Ca exchange (Horackova 1984). The potential dependency of the second (phasic) component correlated with that of the slow inward calcium current. Only the tonic but not the phasic component could be observed in preparations without the presence of the slow inward calcium current. The tonic component prevailed when both the slow inward current and phasic tension were greatly reduced by nifedipine. Long experiments, long depolarizing clamp pulses, a metabolic inhibitor 2,4-dinitrophenol, inhibitors of Na/K pump ouabain and AR-L57, toxins promoting intracellular sodium accumulation (aconitine, scorpion toxin) were all shown to increase the tonic tension, but not the slow inward current; they induced a transition from biphasic tension-voltage curve into a monotonically increasing one. We concluded that these procedures and agents greatly stimulate Ca influx via Na/Ca exchange. These results show that Na/Ca exchange can function as a reserve system of Ca2+ used for contraction, thus supporting the heart function, especially under unfavourable metabolic conditions.  相似文献   

14.
Current clamp studies showed that after 10 minutes under DNP 10(-4) M the membrane potential does not change significantly while an important shortening of the action potential duration and a diminished amplitude are observed. Voltage clamp studies have been performed on the slow inward and delayed outward currents. DNP 10(-4) M induced a marked decrease of the slow inward current related to the reduction in both conductance and driving force, and a decrease in the amplitude of the delayed current. The decrease of the slow inward current seems to be mainly responsible for the suppression of the plateau of the action potential during metabolic inhibition.  相似文献   

15.
Calcium channels in the heart play a major role in cardiac function. These channels are modulated in a variety of ways, including protein phosphorylation. Cyclic AMP-mediated phosphorylation is the best understood phosphorylation mechanism which regulates calcium influx into cardiac cells. Binding of an agonist (e.g., a catecholamine) to the appropriate receptor stimulates production of cyclic AMP by adenylate cyclase. The cyclic AMP may subsequently bind to and activate a cyclic AMP-dependent protein kinase, which then can phosphorylate a number of substrates, including the calcium channel (or a closely-associated regulatory protein). This results in stimulation of the calcium channels, greater calcium influx, and increased contractility. The cyclic AMP system is not the only protein kinase system in the heart. Thus, the possibility exists that other protein kinases may also regulate the calcium channels and, hence, cardiac function. Recent evidence suggests that cyclic GMP-mediated phosphorylation may play a role opposite to cyclic AMP-mediated phosphorylation, i.e., inhibition of the calcium current rather than stimulation. Other recent evidence also suggests that a calcium/calmodulin-dependent protein kinase and calcium/phospholipid-dependent protein kinase (protein kinase C) may also regulate the myocardial calcium channels. Thus, protein phosphorylation may be a general mechanism whereby calcium channels and cardiac function are modulated under a variety of conditions.  相似文献   

16.
The possible involvement of cyclic AMP in the regulation of retinal serotonin N-acetyltransferase (NAT) activity was investigated using eye cups of Xenopus laevis cultured in a defined medium. Addition of dibutyrylcyclic AMP (dbcAMP) increased retinal NAT activity in eye cups cultured in light. Addition of adenosine or 5'-AMP under identical conditions was without effect. 3-Isobutylmethylxanthine (IBMX) increased both retinal cyclic AMP levels and NAT activity in light-exposed eye cups. Forskolin also increased the concentration of cyclic AMP and the activity of NAT, and the effect of forskolin on both of these parameters was synergistically enhanced by IBMX. The effects of forskolin and of dbcAMP did not require the addition of calcium to the medium; thus, Ca2+ -dependent synaptic transmission does not appear to be required for the response to these drugs. Incubation conditions that activate cyclic AMP-dependent protein kinase in retinal homogenates had no effect on NAT activity, suggesting that direct phosphorylation of NAT was probably not involved in the response to elevating cyclic AMP in situ. The effect of dbcAMP was blocked by protein synthesis inhibitors. These results suggest that cyclic AMP increases retinal NAT activity by a mechanism that involves protein synthesis, and support a role for cyclic AMP in the nocturnal increase of NAT activity in darkness.  相似文献   

17.
Continuous perfusion of rat hearts with concentrations of forskolin between 0.1 and 12 microM resulted in transient increases in tension after 45 s, followed by a return to the control value after 5 min. In contrast, the content of cyclic AMP increased linearly with time over this period, reaching values up to 35 times control after 5 min. Increases in contractile force, intracellular cyclic AMP concentration and the proportion of phosphorylase in the a form were dependent on the concentration of forskolin when measured 45 s and 120 s after initiation of perfusion. In hearts perfused for 45 s with various concentrations of forskolin, the measured cyclic AMP-dependent protein kinase activity ratio and phosphorylase a content for a given measured intracellular cyclic AMP concentration were both much less than the corresponding values in hearts perfused for 30 s with various concentrations of isoprenaline. The phosphorylation of the contractile proteins troponin-I and C-protein also showed a concentration-dependent increase in hearts perfused with forskolin. There was a strong correlation between the cyclic AMP-dependent protein kinase activity ratios and the phosphorylation of the contractile proteins under all perfusion conditions. These results suggest that cyclic AMP is compartmented in perfused rat heart, and that much of the cyclic AMP produced in response to forskolin is unavailable to activate cyclic AMP-dependent protein kinase.  相似文献   

18.
Forskolin, 1 microM, increased acetylcholine (ACh)-stimulated 45Ca uptake by chromaffin cells. The stimulatory effects of forskolin decreased with increasing concentration of ACh. The attenuation of the effect of forskolin on 45Ca uptake as a function of ACh concentration correlated well with changes in the forskolin effect on ACh-evoked catecholamine (CA) release. Forskolin increased excess KCl- and veratrine-evoked CA release and 45Ca uptake. Forskolin by itself stimulated 45Ca efflux and enhanced ACh-, excess KCl-, and veratrine-stimulated 45Ca efflux. High doses of forskolin inhibited both ACh-evoked 45Ca uptake and CA release. The inhibitory action of forskolin was specific to receptor-mediated response because excess KCl- and veratrine-stimulated 45Ca uptake and CA release were not inhibited. Forskolin, 0.3-30 microM, dose-dependently increased caffeine-stimulated CA release and 45Ca efflux in the absence of Ca2+ in the medium, and the effects were mimicked by dibutyryl cyclic AMP. These results suggest that cyclic AMP increases stimulation-induced CA release by enhancing calcium uptake across the plasma membrane and/or altering calcium flux in an intracellular calcium store.  相似文献   

19.
Abstract: As cerebral neurons express the dopamine D1 receptor positively coupled with adenylyl cyclase, together with the D3 receptor, we have investigated in a heterologous cell expression system the relationships of cyclic AMP with D3 receptor signaling pathways. In NG108-15 cells transfected with the human D3 receptor cDNA, dopamine, quinpirole, and other dopamine receptor agonists inhibited cyclic AMP accumulation induced by forskolin. Quinpirole also increased mitogenesis, assessed by measuring [3H]thymidine incorporation. This effect was blocked partially by genistein, a tyrosine kinase inhibitor. Forskolin enhanced by 50–75% the quinpirole-induced [3H]thymidine incorporation. This effect was maximal with 100 n M forskolin, occurred after 6–16 h, was reproduced by cyclic AMP-permeable analogues, and was blocked by a protein kinase A inhibitor. Forskolin increased D3 receptor expression up to 135%, but only after 16 h and at concentrations of >1 µ M . Thus, in this cell line, the D3 receptor uses two distinct signaling pathways: it efficiently inhibits adenylyl cyclase and induces mitogenesis, an effect possibly involving tyrosine phosphorylation. Activation of the cyclic AMP cascade potentiates the D3 receptor-mediated mitogenic response, through phosphorylation by a cyclic AMP-dependent kinase of a yet unidentified component. Hence, transduction of the D3 receptor can involve both opposite and synergistic interactions with cyclic AMP.  相似文献   

20.
Signal transduction processes regulating melatonin production in the light-sensitive trout pineal organ were investigated by immunocytochemical and immunochemical demonstration of phosphorylated cyclic AMP-responsive element-binding protein (pCREB) and measurements of cyclic AMP, melatonin, and calcium levels. Melatonin levels were tightly controlled by light and darkness. Elevation of cyclic AMP levels by 8-bromo-cyclic AMP, forskolin, and 3-isobutyl-1-methylxanthine increased the levels of pCREB and melatonin in light- or dark-adapted pineal organs in vitro. Without pharmacological treatment, the levels of pCREB and cyclic AMP remained constant for several hours before and after light onset. Inhibition of cyclic AMP-dependent proteasomal proteolysis by lactacystin, MG 132, and calpain inhibitor I did not prevent the rapid, light-induced suppression of melatonin biosynthesis. However, changes in the intracellular calcium concentration by drugs affecting voltage-gated calcium channels of the L type and intracellular calcium oscillations (cobalt chloride, nifedipine, Bay K 8644) had dramatic effects on the rapid, light-dependent changes in melatonin levels. These effects were not accompanied by changes in cyclic AMP levels. Thus, the rapid, light-dependent changes in melatonin levels in the trout pineal organ are regulated apparently by a novel calcium signaling pathway and do not involve changes in cyclic AMP levels, cyclic AMP-dependent proteasomal proteolysis, or phosphorylation of cyclic AMP-responsive element-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号