首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the late eighteenth century, fossils of bizarre extinct creatures have been described from the Americas, revealing a previously unimagined chapter in the history of mammals. The most bizarre of these are the ‘native’ South American ungulates thought to represent a group of mammals that evolved in relative isolation on South America, but with an uncertain affinity to any particular placental lineage. Many authors have considered them descended from Laurasian ‘condylarths’, which also includes the probable ancestors of perissodactyls and artiodactyls, whereas others have placed them either closer to the uniquely South American xenarthrans (anteaters, armadillos and sloths) or the basal afrotherians (e.g. elephants and hyraxes). These hypotheses have been debated owing to conflicting morphological characteristics and the hitherto inability to retrieve molecular information. Of the ‘native’ South American mammals, only the toxodonts and litopterns persisted until the Late Pleistocene–Early Holocene. Owing to known difficulties in retrieving ancient DNA (aDNA) from specimens from warm climates, this research presents a molecular phylogeny for both Macrauchenia patachonica (Litopterna) and Toxodon platensis (Notoungulata) recovered using proteomics-based (liquid chromatography–tandem mass spectrometry) sequencing analyses of bone collagen. The results place both taxa in a clade that is monophyletic with the perissodactyls, which today are represented by horses, rhinoceroses and tapirs.  相似文献   

2.
《Journal of morphology》2017,278(5):704-717
The orientation of the semicircular canals of the inner ear in the skull of vertebrates is one of the determinants of the capacity of this system to detect a given rotational movement of the head. Past functional studies on the spatial orientation of the semicircular canals essentially focused on the lateral semicircular canal (LSC), which is supposedly held close to horizontal during rest and/or alert behaviors. However, they generally investigated this feature in only a few and distantly related taxa. Based on 3D‐models reconstructed from µCT‐scans of skulls, we examined the diversity of orientations of the LSC within one of the four major clades of placental mammals, that is, the superorder Xenarthra, with a data set that includes almost all extant genera and two extinct taxa. We observed a wide diversity of LSC orientations relative to the basicranium at both intraspecific and interspecific scales. The estimated phylogenetic imprint on the orientation of the LSC was significant but rather low within the superorder, though some phylogenetic conservatism was detected for armadillos that were characterized by a strongly tilted LSC. A convergence between extant suspensory sloths was also detected, both genera showing a weakly tilted LSC. Our preliminary analysis of usual head posture in extant xenarthrans based on photographs of living animals further revealed that the LSC orientation in armadillos is congruent with a strongly nose‐down head posture. It also portrayed a more complex situation for sloths and anteaters. Finally, we also demonstrate that the conformation of the cranial vault and nuchal crests as well as the orientation of the posterior part of the petrosal may covary with the LSC orientation in Xenarthra. Possible inferences for the head postures of extinct xenarthrans such as giant ground sloths are discussed in the light of these results.  相似文献   

3.
The Magnorder Xenarthra includes strange extinct groups, like glyptodonts, similar to large armadillos, and ground sloths, terrestrial relatives of the extant tree sloths. They have created considerable paleobiological interest in the last decades; however, the ecology of most of these species is still controversial or unknown. The body mass estimation of extinct species has great importance for paleobiological reconstructions. The commonest way to estimate body mass from fossils is through linear regression. However, if the studied species does not have similar extant relatives, the allometric pattern described by the regression could differ from those shown by the extinct group. That is the case for glyptodonts and ground sloths. Thus, stepwise multiple regression were developed including extant xenarthrans (their taxonomic relatives) and ungulates (their size and ecological relatives). Cases were weighted to maximize the taxonomic evenness. Twenty‐eight equations were obtained. The distribution of the percent of prediction error (%PE) was analyzed between taxonomic groups (Perissodactyla, Artiodactyla, and Xenarthra) and size groups (0–20 kg, 20–300 kg, and more than 300 kg). To assess the predictive power of the functions, equations were applied to species not included in the regression development [test set cross validation, (TSCV)]. Only five equations had a homogeneous %PE between the aforementioned groups. These were applied to five extinct species. A mean body mass of 80 kg was estimated for Propalaehoplophorus australis (Cingulata: Glyptodontidae), 594 kg for Scelidotherium leptocephalum (Phyllophaga: Mylodontidae), and 3,550.7 kg for Lestodon armatus (Phyllophaga: Mylodontidae). The high scatter of the body mass estimations obtained for Catonyx tarijensis (Phyllophaga: Mylodontidae) and Thalassocnus natans (Phyllophaga: Megatheriidae), probably due to different specializations, prevented us from predicting its body mass. Surprisingly, although obtained from ungulates and xenarthrans, these five selected equations were also able to predict the body mass of species from groups as different as rodents, carnivores, hyracoideans, or tubulidentates. This result suggests the presence of a complex common allometric pattern for all quadrupedal placentals. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Madagascar is well known for its diverse fauna and flora, being home to many species not found anywhere else in the world. However, its biodiversity in the recent past included a range of extinct enigmatic fauna, such as elephant birds, giant lemurs and dwarfed hippopotami. The ‘Malagasy aardvark’ (Plesiorycteropus) has remained one of Madagascar’s least well-understood extinct species since its discovery in the 19th century. Initially considered a close relative of the aardvark (Orycteropus) within the order Tubulidentata, more recent morphological analyses challenged this placement on the grounds that the identifiably derived traits supporting this allocation were adaptations to digging rather than shared ancestry. Because the skeletal evidence showed many morphological traits diagnostic of different eutherian mammal orders, they could not be used to resolve its closest relatives. As a result, the genus was tentatively assigned its own taxonomic order ‘Bibymalagasia’, yet how this order relates to other eutherian mammal orders remains unclear despite numerous morphological investigations. This research presents the first known molecular sequence data for Plesiorycteropus, obtained from the bone protein collagen (I), which places the ‘Malagasy aardvark’ as more closely related to tenrecs than aardvarks. More specifically, Plesiorycteropus was recovered within the order Tenrecoidea (golden moles and tenrecs) within Afrotheria, suggesting that the taxonomic order ‘Bibymalagasia’ is obsolete. This research highlights the potential for collagen sequencing in investigating the phylogeny of extinct species as a viable alternative to ancient DNA (aDNA) sequencing, particularly in cases where aDNA cannot be recovered.  相似文献   

5.
We describe a new taxon of mylodontid sloth from the late Oligocene (Deseadan South American Land Mammal “age”), Salla Beds of Bolivia. This taxon, Paroctodontotherium calleorum, new genus and species, is one of the oldest known sloths, but it is surprisingly derived. It is referable to the Mylodontidae and, with just a little doubt, to the Mylodontinae. It shares a number of derived characteristics with other mylodontids and even mylodontines. These include: a relatively low temporomandibular joint; a relatively short zygomatic process of the squamosal; an elongated, narrow braincase; anteriorly diverging toothrows; broad muzzle; and greatly enlarged external nares. The relative width of the muzzle of Paroctodontotherium is as great as any Pleistocene mylodontid except the giant grazer, Lestodon. We review and critique methods of estimating diets of extinct sloths and propose a hypothesis in regard to the feeding ecology of Paroctodontotherium. Based upon its broad muzzle, the degree of tooth wear, and its presence in a habitat dominated by hypsodont herbivores, we propose that Paroctodontotherium was a bulk feeder that foraged near ground level. Grasses were likely a major component of its diet. The addition of this new taxon, along with other recently discovered taxa, illustrates that late Oligocene sloths had much greater diversity than recognized just a decade ago. This diversity is evident in species richness, variations in body sizes, dental morphologies, and means of locomotion. We regard this relatively sudden sloth radiation as a significant component of the Eocene-Oligocene faunal turnover and was related to the development of more open habitats of post-Eocene South America.  相似文献   

6.
Recently discovered stapes of Pleistocene South American ground sloths of the genera Lestodon and Glossotherium are studied. Available body mass estimates are larger for Lestodon (4100 kg) than for Glossotherium (1500 kg), reflecting the obvious difference in the overall size of the skull and other bones. However, as previously reported, the absolute size of incus and malleus is very similar in both genera. In a previous work, the frequency range of Glossotherium (from 44 Hz to 15,489 Hz) was estimated quantitatively from well-preserved tympanic ring dimensions. For the first time the frequency ranges of hearing in both genera are estimated by a method based on the footplate area of the stapes. The obtained frequency ranges are consistent with the previous estimation for Glossotherium and are similar in both genera, giving evidence of a frequency range of hearing independent of body size in this group of mammals. Some possible paleobiological implications of the results may include adaptation to some specific sound source, fossoriality, or long-range communication.  相似文献   

7.
This study is undertaken in order to evaluate specific hypotheses of relationship among extant and extinct sloths (Mammalia, Xenarthra, Tardigrada). Questions of particular interest include the relationship among the three traditional family groupings of extinct ground sloths and the monophyletic or diphyletic origin of the two genera of extant tree sloths. A computer‐based cladistic investigation of the phylogenetic relationships among 33 sloth genera is performed based upon 286 osteological characteristics of the skull, lower jaw, dentition and hyoid arch. Characters are polarized via comparisons with the following successive outgroups, all members of the supraordinal grouping Edentata: the Vermilingua, or anteaters; the Cingulata, or armadillos and glyptodonts; the Palaeanodonta; and the Pholidota, or pangolins. The results of the analysis strongly corroborate the diphyly of living tree sloths, with the three‐toed sloth Bradypus positioned as the sister‐taxon to all other sloths, and the two‐toed sloth Choloepus allied with extinct members of the family Megalonychidae. These results imply that the split between the two extant sloth genera is ancient, dating back perhaps as much as 40 Myr, and that the similarities between the two taxa, including their suspensory locomotor habits, present one of the most dramatic examples of convergent evolution known among mammals. The monophyly of the three traditional ground sloth families Megatheriidae, Megalonychidae and Mylodontidae is confirmed in the present study, and the late Miocene–Pleistocene nothrotheres are shown to form a clade. It is suggested that this latter clade merits recognition as a distinct family‐level grouping, the family Nothrotheriidae. The monophyly of the Megatherioidea, a clade including members of the families Megatheriidae, Megalonychidae and Nothrotheriidae, is also supported. Within Megatherioidea, the families Nothrotheriidae and Megatheriidae form a monophyletic group called the Megatheria. The relationships within the families Megatheriidae and Mylodontidae are fully and consistently resolved, although the hypothesized scheme of relationships among the late Miocene to Pleistocene members of the mylodontid subfamily Mylodontinae differ strongly from any proposed by previous authors. Within the family Megalonychidae, Choloepus is allied to a monophyletic grouping of West Indian sloths, although the relationships within this clade are not fully resolved. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 140 , 255–305.  相似文献   

8.
Hill RV 《Journal of morphology》2006,267(12):1441-1460
Reconstruction of soft tissues in fossil vertebrates is an enduring challenge for paleontologists. Because inferences must be based on evidence from hard tissues (typically bones or teeth), even the most complete fossils provide only limited information about certain organ systems. Osteoderms ("dermal armor") are integumentary bones with high fossilization potential that hold information about the anatomy of the skin in many extant and fossil amniotes. Their importance for functional morphology and phylogenetic research has recently been recognized, but studies have focused largely upon reptiles, in which osteoderms are most common. Among mammals, osteoderms occur only in members of the clade Xenarthra, which includes armadillos and their extinct relatives: glyptodonts, pampatheres, and, more distantly, ground sloths. Here, I present new information on the comparative morphology and histology of osteoderms and their associated soft tissues in 11 extant and fossil xenarthrans. Extinct mylodontid sloths possessed simple, isolated ossicles, the presence of which is likely plesiomorphic for Xenarthra. More highly derived osteoderms of glyptodonts, pampatheres, and armadillos feature complex articulations and surface ornamentation. Osteoderms of modern armadillos are physically associated with a variety of soft tissues, including nerve, muscle, gland, and connective tissue. In some cases, similar osteological features may be caused by two or more different tissue types, rendering soft-tissue inferences for fossil osteoderms equivocal. Certain osteological structures, however, are consistently associated with specific soft-tissue complexes and therefore represent a relatively robust foundation upon which to base soft-tissue reconstructions of extinct xenarthrans.  相似文献   

9.
Knowledge of the phylogenetic position of the order Cetacea (whales, dolphins, and porpoises) within Mammalia is of central importance to evolutionary biologists studying the transformations of biological form and function that accompanied the shift from fully terrestrial to fully aquatic life in this clade. Phylogenies based on molecular data and those based on morphological data both place cetaceans among ungulates but are incongruent in other respects. Morphologists argue that cetaceans are most closely related to mesonychians, an extinct group of terrestrial ungulates. They have disagreed, however, as to whether Perissodactyla (odd-toed ungulates) or Artiodactyla (even-toed ungulates) is the extant clade most closely related to Cetacea, and have long maintained that each of these orders is monophyletic. The great majority of molecule-based phylogenies show, by contrast, not only that artiodactyls are the closest extant relatives of Cetacea, but also that Artiodactyla is paraphyletic unless cetaceans are nested within it, often as the sister group of hippopotamids. We tested morphological evidence for several hypotheses concerning the sister taxon relationships of Cetacea in a maximum parsimony analysis of 123 morphological characters from 10 extant and 30 extinct taxa. We advocate treating certain multistate characters as ordered because such a procedure incorporates information about hierarchical morphological transformation. In all most-parsimonious trees, whether multistate characters are ordered or unordered, Artiodactyla is the extant sister taxon of Cetacea. With certain multistate characters ordered, the extinct clade Mesonychia (Mesonychidae + Hapalodectidae) is the sister taxon of Cetacea, and Artiodactyla is monophyletic. When all fossils are removed from the analysis, Artiodactyla is paraphyletic with Cetacea nested inside, indicating that inclusion of mesonychians and other extinct stem taxa in a phylogenetic analysis of the ungulate clade is integral to the recovery of artiodactyl monophyly. Phylogenies derived from molecular data alone may risk recovering inconsistent branches because of an inability to sample extinct clades, which by a conservative estimate, amount to 89% of the ingroup. Addition of data from recently described astragali attributed to cetaceans does not overturn artiodactyl monophyly.  相似文献   

10.
By clarifying the phylogenetic positions of ‘orphan’ protists (unicellular micro-eukaryotes with no affinity to extant lineages), we may uncover the novel affiliation between two (or more) major lineages in eukaryotes. Microheliella maris was an orphan protist, which failed to be placed within the previously described lineages by pioneering phylogenetic analyses. In this study, we analysed a 319-gene alignment and demonstrated that M. maris represents a basal lineage of one of the major eukaryotic lineages, Cryptista. We here propose a new clade name ‘Pancryptista’ for Cryptista plus M. maris. The 319-gene analyses also indicated that M. maris is a key taxon to recover the monophyly of Archaeplastida and the sister relationship between Archaeplastida and Pancryptista, which is collectively called ‘CAM clade’ here. Significantly, Cryptophyceae tend to be attracted to Rhodophyta depending on the taxon sampling (ex., in the absence of M. maris and Rhodelphidia) and the particular phylogenetic ‘signal’ most likely hindered the stable recovery of the monophyly of Archaeplastida in previous studies.  相似文献   

11.
A ponderously constructed ornithischian dinosaur, Lurdusaurus arenatus, nov.g., nov.sp., from the Aptian of Niger resembles extinct giant ground sloths in general body form. Details of its skeletal anatomy indicate a close affinity to European iguanodontids of Early Cretaceous age.  相似文献   

12.
13.
Most of the ungulates (hoofed mammals) that survive today belong to the orders Artiodactyla (even-toed ungulates) or Perissodactyla (odd-toed ungulates), and are known for their herbivorous specializations (e.g. the ruminant type of stomach), for their large body size (e.g. hippos or rhinos) or for their fleetness of foot (e.g. antelope or horses). Yet these present-day examples represent the specialized end-points of a large Tertiary radiation of hoofed mammals. There was a bewildering variety of small generalized early Tertiary forms, even including some carnivorous taxa. In addition, some specialized island continent ungulate radiations are now either entirely extinct (the South American ungulates), or are represented by only a few living members (the African 'subungulates'). Recent fossil discoveries, and advances in phylogenetic systematics, have reopened a number of issues in ungulate classification, which have affected our views not only on ungulates themselves, but also on patterns of Tertiary biogeography and evolution.  相似文献   

14.
The Xenarthra, particularly the Tardigrada, are with the Notoungulata and Marsupialia among the most diversified South American mammals. Lujanian South American Land Mammal Age localities from the coastal Piedra Escrita site and Andean Casa del Diablo Cave, Peru, have yielded three specimens of the Megalonychidae Diabolotherium nordenskioldi gen. nov. This singular fossil sloth exhibits a peculiar mosaic of cranial and postcranial characters. Some are considered convergent with those of other sloths (e.g. 5/4 quadrangular teeth, characteristic of Megatheriidae), whereas others clearly indicate climbing capabilities distinct from the suspensory mode of extant sloths. The arboreal mode of life of D. nordenskioldi is suggested by considerable mobility of the elbow, hip, and ankle joints, a posteriorly convex ulna with an olecranon shorter than in fossorial taxa, a radial notch that faces more anteriorly than in other fossil sloths and forms an obtuse angle with the coronoid process (which increases the range of pronation–supination), a proximodistally compressed scaphoid, and a wide range of digital flexion. D. nordenskioldi underscores the great adaptability of Tardigrada: an arboreally adapted form is now added to the already known terrestrial, subarboreal, and aquatic (marine and freshwater) fossil sloths. A preliminary phylogenetic analysis of the Tardigrada confirmed the monophyly of Megatherioidea, Nothrotheriidae, Megatheriidae, and Megalonychidae, in which Diabolotherium is strongly nested.  © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 149 , 179–235.  相似文献   

15.
Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C3 plants, while for the diet of leporids, more than 16% of plant species are identified as C4 (31% species are from Poaceae). The ability of several leporid species to consume C4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C4 plants in the late Miocene, the so-called ‘nature’s green revolution’, induced by global environmental change, is suggested to be one of the major ‘ecological opportunities’, which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids.  相似文献   

16.
Accounts of woolly mammoths (Mammuthus primigenius) preserved so well in ice that their meat is still edible have a long history of intriguing the public and influencing paleontological thought on Quaternary extinctions and climate, with some scientists resorting to catastrophism to explain the instantaneous freezing necessary to preserve edible meat. Famously, members of The Explorers Club purportedly dined on frozen mammoth from Alaska, USA, in 1951. This event, well received by the press and general public, became an enduring legend for the Club and popularized the notorious annual tradition of serving rare and exotic food at Club dinners that continues to this day. The Yale Peabody Museum holds a sample of meat preserved from the 1951 meal, interestingly labeled as a South American giant ground sloth (Megatherium), not mammoth. We sequenced a fragment of the mitochondrial cytochrome-b gene and studied archival material to verify its identity, which if genuine, would extend the range of Megatherium over 600% and alter our views on ground sloth evolution. Our results indicate that the meat was not mammoth or Megatherium but green sea turtle (Chelonia mydas). The prehistoric dinner was likely an elaborate publicity stunt. Our study emphasizes the value of museums collecting and curating voucher specimens, particularly those used for evidence of extraordinary claims.  相似文献   

17.
The first steps in the history of South American mammals took place ca. 130 Ma., when the South American plate, still connected to the Antarctic Peninsula, began to drift away from the African-Indian plate. Most of the Mesozoic history of South American mammals is still unknown, and we only have a few enigmatic taxa (i.e., a Jurassic Australosphenida and an Early Cretaceous Prototribosphenida) that pose more evolutionary and biogeographic questions than answers. The best-known Mesozoic, South American land-mammal fossils are from Late Cretaceous Patagonian beds. These fossils represent the last survivors of non- and pre-tribosphenic Pangaean lineages, all of them with varying endemic features: some with few advanced features (e.g., ?Eutriconodonta and “Symmetrodonta”), some very diversified as endemic groups (e.g., ?Docodonta Reigitheriidae), and others representing vicariant types of well known Laurasian Mesozoic lineages (e.g., Gondwanatheria as vicariant of Multituberculata). These endemic mammals lived as relicts (although advanced) of pangeic lineages when a primordial South American continent was still connected to the Antarctic Peninsula and, at the northern extreme, near the North American Plate. By the beginning of the Late Cretaceous, the volcanic and diastrophic processes that finally led to the differentiation of the Caribbean region and Central America built up transient geographic connections that permitted the initiation of an overland inter-American exchange that included, for example, dinosaurian titanosaurs from South America and hadrosaurs from North America. The immigration of other vertebrates followed the same route, for example, polydolopimorphian marsupials. These marsupials were assumed to have differentiated in South America prior to new discoveries from the North American Late Cretaceous. The complete extinction of endemic South American Mesozoic mammals by the Late Cretaceous-Early Paleocene, and the subsequent and in part coetaneous immigration of North American therians, respectively, represent two major moments in the history of South American mammals: a Gondwanan Episode and a South American Episode. The Gondwanan Episode was characterized by non- and pre-tribosphenic mammal lineages that descended from the Pangeic South American stage (but already with a pronounced Gondwanan accent, and wholly extinguished during the Late Cretaceous-Early Paleocene span). The South American Episode, in turn, was characterized only by therian mammals, mostly emigrated from the North American continent and already with a South American accent obtained through isolation. The southernmost extreme of South America (Patagonia) remained connected to the present Antarctic Peninsula at least up until about 30 Ma., and both provided the substratum where the primordial cladogenesis of “South American” mammals occurred. The resulting cladogenesis of South American therian mammals followed Gould's motto: early experimentation, later standardization. That is to say, early cladogenesis engendered a great variety of taxa with scarce morphological differentiation. After this early cladogenesis (Late Eocene-Early Oligocene), the variety of taxa became reduced, but each lineage became clearly recognizable distinctive by a constant morphologic pattern. At the same time, those mammals that underwent the “early experimentation” were part of communities dominated by archaic lineages (e.g., brachydont types among the native “ungulates”), whereas the subsequent communities were dominated by mammals of markedly “modern” stamp (e.g., protohypsodont types among the native “ungulates”). The Gondwanan and South American Episodes were separated by a critical latest Cretaceous-earliest Paleocene hiatus, it is as unknown as it is important in which South American land-mammal communities must have experienced extinction of the Gondwanan mammals and the arrival and radiation of the North American marsupials and placentals (with the probable exception of the xenarthrans, whose biogeographic origin is still unclear).  相似文献   

18.
The hyoid apparatus reflects aspects of the form and function of feeding in living and extinct organisms and, despite the availability of information about this structure for Xenarthra, it remains little explored from an evolutionary perspective. Here we compare the morphology of the hyoid apparatus in xenarthrans, describing its general morphology and variation in each major clade and score these variations as phylogenetic characters, which were submitted to ancestral states reconstructions. The general hyoid morphology of Xenarthra consists of a v-bone (basihyal fused with the thyrohyals) and three paired bones (stylohyal, epihyal and ceratohyal), which are unfused in the majority of taxa. The clade-specific morphology observed here, allowed us to obtain additional synapomorphies for all major clades of Xenarthra (Cingulata, Pilosa, Folivora and Vermilingua), for Glyptodontididae, and for Nothrotheriidae. The fusion of hyoid elements are convergentelly achieved among the diphyletic extant tree sloths, some extinct ground sloths and glyptodontids. Despite the heavy influence of adaptive evolution related to feeding habits, the morphology of the hyoid apparatus proved to be a valuable source of phylogenetic information.  相似文献   

19.
Computer reconstructions of Archimylacris eggintoni, a Carboniferous stem-group dictyopteran (‘roachoid’), are presented. A siderite-hosted specimen was scanned using high-resolution X-ray microtomography (µCT), and a ‘virtual fossil’ was created with a resolution of 17.7 µm. This has revealed the morphology in great detail, including adhesive limb structures indicative of climbing and specializations for rapid movement. The antennae are filiform, and the mandibles are comparable to those of certain extant cockroaches, suggesting a similar generalist, saprophagous diet. The reconstruction reveals a high degree of specialization, and provides insights into the mode of life of these common Palaeozoic insects. Further µCT study of insect fossils has the potential to supplement wing venation with new characters, and hence improve fossil insect phylogenies.  相似文献   

20.
Small cursorial mammals, such as lagomorphs, elephant shrews, and the more cursorial caviomorph rodents, share both the similar locomotor gait of rapid half-bounding and a similar scapula anatomy of a long, slender, caudally projecting metacromion process. This scapular morphology is also present in some notoungulates (extinct endemic South American ungulates), in rabbit-like taxa such as Propachyruchos. In the rabbit Oryctolagus this elongated metacromion process serves to increase the moment arm of the acromiotrapezius and levator scapulae ventralis muscles, which we propose may aid in scapula stabilization and resisting ground reaction forces during the landing phase onto a single forelimb in half-bounding. A long, slender metacromion process is thus an osteological correlate of locomotor specialization, that of rapid half-bounding in small to medium-sized mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号