首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although Rallidae is the most diverse family within Gruiformes, there is little information concerning the karyotype of the species in this group. In fact, Gallinula melanops, a species of Rallidae found in Brazil, is among the few species studied cytogenetically, but only with conventional staining and repetitive DNA mapping, showing 2n=80. Thus, in order to understand the karyotypic evolution and phylogeny of this group, the present study aimed to analyze the karyotype of G. melanops by classical and molecular cytogenetics, comparing the results with other species of Gruiformes. The results show that G. melanops has the same chromosome rearrangements as described in Gallinula chloropus (Clade Fulica), including fission of ancestral chromosomes 4 and 5 of Gallus gallus (GGA), beyond the fusion between two of segments resultants of the GGA4/GGA5, also fusions between the chromosomes GGA6/GGA7. Thus, despite the fact that some authors have suggested the inclusion of G. melanops in genus Porphyriops, our molecular cytogenetic results confirm its place in the Gallinula genus.  相似文献   

2.
Turdus rufiventris and Turdus albicollis, two songbirds belonging to the family Turdidae (Aves, Passeriformes) were studied by C-banding, 18S rDNA, as well as the use of whole chromosome probes derived from Gallus gallus (GGA) and Leucopternis albicollis (LAL). They showed very similar karyotypes, with 2n = 78 and the same pattern of distribution of heterochromatic blocks and hybridization patterns. However, the analysis of 18/28S rDNA has shown differences in the number of NOR-bearing chromosomes and ribosomal clusters. The hybridization pattern of GGA macrochromosomes was similar to the one found in songbirds studied by Fluorescent in situ hybridization, with fission of GGA 1 and GGA 4 chromosomes. In contrast, LAL chromosome paintings revealed a complex pattern of intrachromosomal rearrangements (paracentric and pericentric inversions) on chromosome 2, which corresponds to GGA1q. The first inversion changed the chromosomal morphology and the second and third inversions changed the order of chromosome segments. Karyotype analysis in Turdus revealed that this genus has derived characteristics in relation to the putative avian ancestral karyotype, highlighting the importance of using new tools for analysis of chromosomal evolution in birds, such as the probes derived from L. albicollis, which make it possible to identify intrachromosomal rearrangements not visible with the use of GGA chromosome painting solely.  相似文献   

3.
The genus Hypochaeris offers an excellent model for studies of recent adaptive radiation in the South American continent. We used karyotype analysis with chromomycin?A3 (CMA3)/4??,6-diamidino-2-phenylindole (DAPI) banding and fluorescence in?situ hybridization (FISH), and amplified fragment length polymorphism (AFLP) fingerprinting to investigate for the first time the Brazilian endemic H.?catharinensis and define its position within the South American group of species. Strong CMA-positive signals were seen at the end of both arms of chromosome?3 and at the end of the long arm of chromosome?4. DAPI bands were only detected in subterminal position on short arm of chromosome?4. FISH with 5S and 35S ribosomal DNA (rDNA) probes revealed a single 5S rDNA locus on short arm of chromosome?2, typical for all other South American Hypochaeris taxa analyzed to date. The 35S rDNA locus was identified at subterminal position on the short arm of chromosome?3, as reported so far for only two of the known species (H.?lutea and H.?patagonica). The AFLP study included 55 individuals, comprising nine species of the South American Hypochaeris plus their putative ancestor H.?angustifolia. Eleven AFLP primer combinations generated a total of 401 fragments, of which 388 (96.7%) were polymorphic. High genetic similarities were observed among taxa, with all South American Hypochaeris species falling into one main cluster [100% bootstrap (BS)]. Hypochaeris catharinensis is closely related to H.?lutea (82% BS), forming a well-separated subcluster within the South American species. Taken together, the karyological and AFLP data contribute to the placement of H.?catharinensis within the phylogenetic framework of South American species of Hypochaeris and allow the definition of a novel and well-resolved phylogenetic group (the Lutea group).  相似文献   

4.

Background

NPM1 gene at chromosome 5q35 is involved in recurrent translocations in leukemia and lymphoma. It also undergoes mutations in 60% of adult acute myeloid leukemia (AML) cases with normal karyotype. The incidence and significance of NPM1 deletion in human leukemia have not been elucidated.

Methodology and Principal Findings

Bone marrow samples from 145 patients with myelodysplastic syndromes (MDS) and AML were included in this study. Cytogenetically 43 cases had isolated 5q-, 84 cases had 5q- plus other changes and 18 cases had complex karyotype without 5q deletion. FISH and direct sequencing investigated the NPM1 gene. NPM1 deletion was an uncommon event in the “5q- syndrome” but occurred in over 40% of cases with high risk MDS/AML with complex karyotypes and 5q loss. It originated from large 5q chromosome deletions. Simultaneous exon 12 mutations were never found. NPM1 gene status was related to the pattern of complex cytogenetic aberrations. NPM1 haploinsufficiency was significantly associated with monosomies (p<0.001) and gross chromosomal rearrangements, i.e., markers, rings, and double minutes (p<0.001), while NPM1 disomy was associated with structural changes (p = 0.013). Interestingly, in complex karyotypes with 5q- TP53 deletion and/or mutations are not specifically associated with NPM1 deletion.

Conclusions and Significance

NPM1/5q35 deletion is a consistent event in MDS/AML with a 5q-/-5 in complex karyotypes. NPM1 deletion and NPM1 exon 12 mutations appear to be mutually exclusive and are associated with two distinct cytogenetic subsets of MDS and AML.  相似文献   

5.
Harttia is a genus of the subfamily Loricariinae that posses a broad chromosomal variation. In addition to interspecific karyotype diversity within this group, a multiple sex chromosome system, XX/XY1Y2, has been described for Harttia carvalhoi. Thus, this study aimed to determine the role of chromosomal rearrangements in karyotype differentiation in Harttia by classical and molecular cytogenetic procedures. The results show that Robertsonian rearrangements have a prominent role in the chromosomal diversification of the species analysed, which initially leads to hypothesize a diploid number reduction in Harttia torrenticola and H. carvalhoi. The metacentric chromosome 1, shared between H. torrenticola and H. carvalhoi, could have originated from centric fusions from the ancestral karyotype. A centric fission event associated with the first metacentric pair allowed for the origination of a multiple sex chromosome system XX/XY1Y2, specific to H. carvalhoi. This study highlights the relevance of Robertsonian rearrangements in karyotypic differentiation of the species studied and demonstrates that the occurrence of a centric fission, as opposed to a previously hypothesised chromosome fusion, is directly implicated in the origin of the sex chromosome system of H. carvalhoi.  相似文献   

6.
A phylogenetic study of bird karyotypes   总被引:15,自引:0,他引:15  
N. Takagi  M. Sasaki 《Chromosoma》1974,46(1):91-120
Karyotypes were compared in 48 species, including 6 subspecies, of birds from 12 orders: Casuariiformes, Rheiformes, Sphenisciformes, Pelecaniformes, Ciconiiformes, Anseriformes, Phoenicopteriformes, Gruiformes, Galliformes, Columbiformes, Falconiformes and Strigiformes. — With the exception of the family Accipitridae, all the species studied are characterized by typical bird karyotypes with several pairs of macrochromosomes and a number of microchromosomes, though the boundary between the two is not necessarily sharp. The comparative study of complements revealed that a karyotype with 3 morphologically distinct pairs of chromosomes is frequently encountered in all orders except the Strigiformes. Those 3 pairs, submetacentric nos. 1 and 2, and a subtelocentric or telocentric no. 3, are not only morphologically alike but also have conspicuous homology revealed by the G-banding patterns. Furthermore, G-banding analysis provided evidence for the derivation of the owl karyotype from a typical bird karyotype.—The above cytogenetic features led to the assumption that the 3 pairs of marker chromosomes had been incorporated into an ancestral bird karyotype. It seems probable that those chromosomes have been transmitted without much structural changes from a common ancestor of birds and turtles, since the presence of the same marker chromosomes in the fresh water turtle Geoclemys reevesii is ascertained by G-banding patterns. — A profile of a primitive bird karyotype emerged through the present findings. Hence, it has become possible to elucidate mechanisms involved in certain structural changes of macrochromosomes observed in birds. It was concluded that a major role had been played by centric fission as well as fusion, translocation, and pericentric inversion.  相似文献   

7.
Squamous lung carcinoma lacks specific “ad hoc” therapies. Amplification of chromosome 3q is the most common genomic aberration and this region harbours genes having role as novel targets for therapeutics. There is no standard definition on how to score and report 3q amplification. False versus true 3q chromosomal amplification in squamous cell lung carcinoma may have tremendous impact on trials involving drugs which target DNA zones mapping on 3q. Forty squamous lung carcinomas were analyzed by FISH to assess chromosome 3q amplification. aCGH was performed as gold-standard to avoid false positive amplifications. Three clustered patterns of fluorescent signals were observed. Eight cases out of 40 (20%) showed ≥8 3q signals. Twenty out of 40 (50%) showed from 3 to 7 signals. The remaining showed two fluorescent signals (30%). When corrected by whole chromosome 3 signals, only cases with ≥8 signals maintained a LSI 3q/CEP3 ratio >2. Only the cases showing 3q amplification by aCGH (+3q25.3−3q27.3) showed ≥8 fluorescent signals at FISH evidencing a 3q/3 ratio >2. The remaining cases showed flat genomic portrait at aCGH on chromosome 3. We concluded that: 1) absolute copy number of 3q chromosomal region may harbour false positive interpretation of 3q amplification in squamous cell carcinoma; 2) a case results truly “amplified for chromosome 3q” when showing ≥8 fluorescent 3q signals; 3) trials involving drugs targeting loci on chromosome 3q in squamous lung carcinoma therapy have to consider false versus true 3q chromosomal amplification.  相似文献   

8.
Zamia is unique among Cycadales in its diversity of morphology, ecology and chromosome numbers. The chromosome numbers in Zamia range from 16 to 28, excluding 20, manifest as both interspecific and intraspecific series. It has long been recognized that Robertsonian transformations (chromosomal fission or fusion) probably dominate karyotype evolution in Zamiaceae, although it has been debated whether chromosome numbers are increasing or decreasing. We re‐analyse published karyotypes of Zamia spp., relating both chromosome forms and sizes to recent phylogenetic data. We show that karyotype evolution is most probably moving towards increased asymmetry, with higher numbers of smaller chromosomes, thus supporting chromosomal fission. We also address additional hypotheses for increasing chromosome numbers, namely pericentric inversions and unequal translocations. Finally, we discuss the role of these chromosomal changes in evolutionary radiations. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 168–185.  相似文献   

9.
Background and Aims: Changes in chromosome structure and number play an importantrole in plant evolution. A system well-suited to studying differentmodes of chromosome evolution is the genus Hypochaeris (Asteraceae)with its centre of species' diversity in South America. AllSouth American species uniformly have a chromosome base numberof x = 4 combined with variation in rDNA number and distribution,and a high frequency of polyploidy. The aim of this paper isto assess directions and mechanisms of karyotype evolution inSouth American species by interpreting both newly obtained andprevious data concerning rDNA localization in a phylogeneticcontext. Methods: Eleven Hypochaeris species from 18 populations were studiedusing fluorescence in situ hybridization (FISH) with 35S and5S rDNA probes. A phylogenetic framework was established fromneighbour-net analysis of amplified fragment length polymorphism(AFLP) fingerprint data. Key Results: A single 5S rDNA locus is invariably found on the short armof chromosome 2. Using 35S rDNA loci, based on number (one ortwo) and localization (interstitial on the long arm of chromosome2, but sometimes lacking, and terminal or interstitial on theshort arm of chromosome 3, only very rarely lacking), sevenkaryotype groups can be distinguished; five of these includepolyploids. Karyotype groups with more than one species do notform monophyletic groups. Conclusions: Early evolution of Hypochaeris in South America was characterizedby considerable karyotype differentiation resulting from independentderivations from an ancestral karyotype. There was marked diversificationwith respect to the position and evolution of the 35S rDNA locuson chromosome 3, probably involving inversions and/or transpositions,and on chromosome 2 (rarely 3) concerning inactivation and loss.Among these different karyotype assemblages, the apargioidesgroup and its derivatives constitute by far the majority ofspecies.  相似文献   

10.
It is widely accepted that the incidence of chromosomal aberration is 10–15.2% in the azoospermic male; however, the exact genetic damages are currently unknown for more than 40% of azoospermia. To elucidate the causative gene defects, we used the next generation sequencing (NGS) to map the breakpoints of a chromosome insertion from an azoospermic male who carries a balanced, maternally inherited karyotype 46, XY, inv ins (18,7) (q22.1; q36.2q21.11). The analysis revealed that the breakage in chromosome 7 disrupts two genes, dipeptidyl aminopeptidase-like protein 6 (DPP6) and contactin-associated protein-like 2 (CACNA2D1), the former participates in regulation of voltage-gated potassium channels, and the latter is one of the components in voltage-gated calcium channels. The deletion and duplication were not identified equal or beyond 100 kb, but 4 homologous DNA elements were verified proximal to the breakpoints. One of the proband's sisters inherited the same aberrant karyotype and experienced recurrent miscarriages and consecutive fetus death, while in contrast, another sister with a normal karyotype experienced normal labor and gave birth to healthy babies. The insertional translocation is confirmed with FISH and the Y-chromosome microdeletions were excluded by genetic testing. This is the first report describing chromosome insertion inv ins (18,7) and attributes DPP6 and CACNA2D1 to azoospermia.  相似文献   

11.
The European hake (Merluccius merluccius) is a highly valuable and intensely fished species in which a long-term alive stock has been established in captivity for aquaculture purposes. Due to their huge economic importance, genetic studies on hakes were mostly focused on phylogenetic and phylogeographic aspects; however chromosome numbers are still not described for any of the fifteen species in the genus Merluccius. In this work we report a chromosome number of 2n = 42 and a karyotype composed of three meta/submetacentric and 18 subtelo/telocentric chromosome pairs. Telomeric sequences appear exclusively at both ends of every single chromosome. Concerning rRNA genes, this species show a single 45S rDNA cluster at an intercalary location on the long arm of subtelocentric chromosome pair 12; the single 5S rDNA cluster is also intercalary to the long arm of chromosome pair 4. While U2 snRNA gene clusters map to a single subcentromeric position on chromosome pair 13, U1 snRNA gene clusters seem to appear on almost all chromosome pairs, but showing bigger clusters on pairs 5, 13, 16, 17 and 19. The brightest signals on pair 13 are coincident with the single U2 snRNA gene cluster signals. Therefore, the use of these probes allows the unequivocal identification of at least 7 of the chromosome pairs that compose the karyotype of Merluccius merluccius thus opening the way to integrate molecular genetics and cytological data on the study of the genome of this important species.  相似文献   

12.
Among birds, Tyrannidae comprises one of the most diverse and species‐rich families. Although cytogenetic data have shown interesting results in this family, such as variations in the macrochromosome morphology and diploid number, only a few species have had their karyotypes described. In the present study, we report the characterization of the karyotype of Elaenia spectabilis (Passeriformes, Tyrannidae) by means of classical and molecular cytogenetics. The results show that syntenic groups of Gallus gallus (GGA) were conserved, except GGA1 and GGA4, which were divided into two different pairs each. However, the results obtained with Leucopternis albicollis probes revealed the occurrence of inversions in segments homologous to GGA1q, similar to those observed in other Passerifomes (Turdus), and one inversion in GGA1p. These results suggest that the centric fission in GGA1, as well as the inversions observed in segments homologous to GGA1q, appeared in the early history of Passeriformes because they could be detected in Oscine and Suboscine species. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 391–398.  相似文献   

13.
  • Orchidaceae is a widely distributed plant family with very diverse vegetative and floral morphology, and such variability is also reflected in their karyotypes. However, since only a low proportion of Orchidaceae has been analysed for chromosome data, greater diversity may await to be unveiled. Here we analyse both genome size (GS) and karyotype in two subtribes recently included in the broadened Maxillariinea to detect how much chromosome and GS variation there is in these groups and to evaluate which genome rearrangements are involved in the species evolution.
  • To do so, the GS (14 species), the karyotype – based on chromosome number, heterochromatic banding and 5S and 45S rDNA localisation (18 species) – was characterised and analysed along with published data using phylogenetic approaches.
  • The GS presented a high phylogenetic correlation and it was related to morphological groups in Bifrenaria (larger plants – higher GS). The two largest GS found among genera were caused by different mechanisms: polyploidy in Bifrenaria tyrianthina and accumulation of repetitive DNA in Scuticaria hadwenii. The chromosome number variability was caused mainly through descending dysploidy, and x=20 was estimated as the base chromosome number.
  • Combining GS and karyotype data with molecular phylogeny, our data provide a more complete scenario of the karyotype evolution in Maxillariinae orchids, allowing us to suggest, besides dysploidy, that inversions and transposable elements as two mechanisms involved in the karyotype evolution. Such karyotype modifications could be associated with niche changes that occurred during species evolution.
  相似文献   

14.
Rallidae, with 34 genera including 142 species, is the largest family in the Gruiformes, the phylogenetic placement of this family was still in debate. The complete mitochondrial genomes (mitogenomes), with many advantageous characters, have become popular markers in phylogenetic analyses. We sequenced the mitogenomes of brown crake (Amaurornis akool) and white-breasted waterhen (Amaurornis phoenicurus), analyzed the genomic characters of mitogenomes in Rallidae, and explored the phylogenetic relationships between Rallidae and other four families in Gruiformes based on mitogenome sequences of 32 species with Bayesian method. The mitogenome of A. akool/A. phoenicurus was 16,950/17,213 bp in length, and contained 37 genes typical to avian mitogenomes and one control region, respectively. The genomic characters of mitogenomes in Rallidae were similar. The phylogenetic results indicated that, among five families, Rallidae had closest relationship with Heliornithidae, which formed a sister taxa to Gruidae, while Rhynochetidae located in the basal lineage. Within Rallidae, Rallina was ancestral clade. Gallirallus & Rallus and Aramides were closely related, Gallicrex & Amaurornis and Fulica & Gallinula had close relationships, and these two taxa formed a sister clade to Porphyrio & Coturnicops. Our phylogenetic analyses provided solid evidence for the phylogenetic placement of Rallidae and the evolutionary relationships among different genus within this family. In addition, the mitogenome data presented here provide useful information for further molecular systematic investigations on Gruiformes as well as conservation biology research of these species.  相似文献   

15.
16.
Characidium constitutes an interesting model for cytogenetic studies, since a large degree of karyotype variation has been detected in this group, like the presence/absence of sex and supernumerary chromosomes and variable distribution of repetitive sequences in different species/populations. In this study, we performed a comparative cytogenetic analysis in 13 Characidium species collected at different South American river basins in order to investigate the karyotype diversification in this group. Chromosome analyses involved the karyotype characterization, cytogenetic mapping of repetitive DNA sequences and cross-species chromosome painting using a W-specific probe obtained in a previous study from Characidium gomesi. Our results evidenced a conserved diploid chromosome number of 2n = 50, and almost all the species exhibited homeologous ZZ/ZW sex chromosomes in different stages of differentiation, except C. cf. zebra, C. tenue, C. xavante and C. stigmosum. Notably, some ZZ/ZW sex chromosomes showed 5S and/or 18S rDNA clusters, while no U2 snDNA sites could be detected in the sex chromosomes, being restricted to a single chromosome pair in almost all the analyzed species. In addition, the species Characidium sp. aff. C. vidali showed B chromosomes with an inter-individual variation of 1 to 4 supernumerary chromosomes per cell. Notably, these B chromosomes share sequences with the W-specific probe, providing insights about their origin. Results presented here further confirm the extensive karyotype diversity within Characidium in contrast with a conserved diploid chromosome number. Such chromosome differences seem to constitute a significant reproductive barrier, since several sympatric Characidium species had been described during the last few years and no interespecific hybrids were found.  相似文献   

17.
Understanding phylogenetic relationships within species complexes of disease vectors is crucial for identifying genomic changes associated with the evolution of epidemiologically important traits. However, the high degree of genetic similarity among sibling species confounds the ability to determine phylogenetic relationships using molecular markers. The goal of this study was to infer the ancestral–descendant relationships among malaria vectors and nonvectors of the Anopheles gambiae species complex by analyzing breakpoints of fixed chromosomal inversions in ingroup and several outgroup species. We identified genes at breakpoints of fixed overlapping chromosomal inversions 2Ro and 2Rp of An. merus using fluorescence in situ hybridization, a whole-genome mate-paired sequencing, and clone sequencing. We also mapped breakpoints of a chromosomal inversion 2La (common to An. merus, An. gambiae, and An. arabiensis) in outgroup species using a bioinformatics approach. We demonstrated that the “standard” 2R+p arrangement and “inverted” 2Ro and 2La arrangements are present in outgroup species Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The data indicate that the ancestral species of the An. gambiae complex had the 2Ro, 2R+p, and 2La chromosomal arrangements. The “inverted” 2Ro arrangement uniquely characterizes a malaria vector An. merus as the basal species in the complex. The rooted chromosomal phylogeny implies that An. merus acquired the 2Rp inversion and that its sister species An. gambiae acquired the 2R+o inversion from the ancestral species. The karyotype of nonvectors An. quadriannulatus A and B was derived from the karyotype of the major malaria vector An. gambiae. We conclude that the ability to effectively transmit human malaria had originated repeatedly in the complex. Our findings also suggest that saltwater tolerance originated first in An. merus and then independently in An. melas. The new chromosomal phylogeny will facilitate identifying the association of evolutionary genomic changes with epidemiologically important phenotypes.  相似文献   

18.
The subfamily Phyllostominae comprises taxa with a variety of feeding strategies. From the cytogenetic point of view, Phyllostominae shows different rates of chromosomal evolution between genera, with Phyllostomus hastatus probably retaining the ancestral karyotype for the subfamily. Since chromosomal rearrangements occur rarely in the genome and have great value as phylogenetic markers and in taxonomic characterization, we analyzed three species: Lophostoma silvicola (LSI), Phyllostomus discolor (PDI) and Tonatia saurophila (TSA), representing the tribe Phyllostomini, collected in the Amazon region, by classic and molecular cytogenetic techniques in order to reconstruct the phylogenetic relationships within this tribe. LSA has a karyotype of 2n=34 and FN=60, PDI has 2n=32 and FN=60 and TSA has 2n=16 and FN=20. Comparative analysis using G-banding and chromosome painting show that the karyotypic complement of TSA is highly rearranged relative to LSI and PHA, while LSI, PHA and PDI have similar karyotypes, differing by only three chromosome pairs. Nearly all chromosomes of PDI and PHA were conserved in toto, except for chromosome 15 that was changed by a pericentric inversion. A strongly supported phylogeny (bootstrap=100 and Bremer=10 steps), confirms the monophyly of Phyllostomini. In agreement with molecular topologies, TSA was in the basal position, while PHA and LSI formed sister taxa. A few ancestral syntenies are conserved without rearrangements and most associations are autapomorphic traits for Tonatia or plesiomorphic for the three genera analyzed here. The karyotype of TSA is highly derived in relation to that of other phyllostomid bats, differing from the supposed ancestral karyotype of Phyllostomidae by multiple rearrangements. Phylogenies based on chromosomal data are independent evidence for the monophyly of tribe Phyllostomini as determined by molecular topologies and provide additional support for the paraphyly of the genus Tonatia by the exclusion of the genus Lophostoma.  相似文献   

19.
We report on a patient with a contiguous interstitial germline deletion of chromosome 10q23, encompassing BMPR1A and PTEN, with clinical manifestations of juvenile polyposis and minor symptoms of Cowden syndrome (CS) and Bannayan–Riley–Ruvalcaba syndrome (BRRS). The patient presented dysmorphic features as well as developmental delay at the age of 5 months. Multiple polyps along all parts of the colon were diagnosed at the age of 3 years, following an episode of a severe abdominal pain and intestinal bleeding. The high-resolution comparative genomic hybridisation revealed a 3.7-Mb deletion within the 10q23 chromosomal region: 86,329,859–90,035,024. The genotyping with four polymorphic microsatellite markers confirmed a de novo 10q deletion on the allele with a paternal origin, encompassing both PTEN and BMPR1A genes. The karyotype analysis additionally identified a balanced translocation involving chromosomes 5q and 7q, and an inversion at chromosome 2, i.e. 46,XY,t(5;7)(q13.3-q36), inv(2)(p25q34). Although many genetic defects were detected, it is most likely that the 10q23 deletion is primarily the cause for the serious phenotypic manifestations. The current clinical findings and deletion of BMPR1A indicate a diagnosis of severe juvenile polyposis, but the existing macrocephaly and PTEN deletion also point to either CS or BRRS, which cannot be ruled out at the moment because of their clinical manifestation later in life and the de novo character of the deletion. The deletion detected in our patient narrows the genetic region deleted in all reported cases with juvenile polyposis by 0.04 Mb from the telomeric side, mapping it to the region chr10:88.5–90.03Mb (GRCh37/hg19), with an overall length of 1.53 Mb.  相似文献   

20.
The karyotype and numeric changes in chromosomes among taxa of Lycoris (spider lilies) have been attributed to whole-arm rearrangements; however, the history of karyotype evolution of Lycoris is still ambiguous. In the natural habitat, one-third of Lycoris taxa are interspecific hybrids that are mainly sterile and extremely diverse in morphologies. Lycoris are geophytes with the reproductive stage initiated inside the bulbs during the storage period, which brings some inconveniences in collecting meiotic materials for studying chromosome pairing. The partial fertility of an artificial F1 interspecific hybrid between L. aurea (2n = 14) and L. radiata (2n = 22) provides an alternative option for tracing the meiotic process in F1 hybrids. The chromosome compositions of those functional gametes generated by the F1 hybrid could be recovered according to the chromosome complements of backcross progenies. We perform genomic in situ hybridization (GISH) analysis on somatic chromosomes of 34 BC1 plants (2n = 14–22) to reveal chromosomal divergences in number and composition of those functional gametes. GISH results also indicated a high homology between the MT- and A-genomes of Lycoris, reflecting on the partial fertility and frequently homoeologous recombination at meiosis of the F1 interspecific hybrids. The diverse chromosome complements and recombinant patterns presented in these functional gametes suggested that interspecific hybridization is an important force in driving diversification among Lycoris species. We suggest that the MT-karyotype genome may be the ancestral type in Lycoris, and some other chromosomal rearrangements in addition to centromeric fission may have played roles in the karyotype evolution of Lycoris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号