首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type II restriction-modification systems are ubiquitous in prokaryotes. Some of them are present in naturally occurring plasmids, which may facilitate the spread of these systems in bacterial populations by horizontal gene transfer. However, little is known about the routes of their dissemination. As a model to study this, we have chosen an Escherichia coli natural plasmid pEC156 that carries the EcoVIII restriction modification system. The presence of this system as well as the cis-acting cer site involved in resolution of plasmid multimers determines the stable maintenance of pEC156 not only in Escherichia coli but also in other enterobacteria. We have shown that due to the presence of oriT-type F and oriT-type R64 loci it is possible to mobilize pEC156 by conjugative plasmids (F and R64, respectively). The highest mobilization frequency was observed when pEC156-derivatives were transferred between Escherichia coli strains, Enterobacter cloacae and Citrobacter freundii representing coliform bacteria. We found that a pEC156-derivative with a functional EcoVIII restriction-modification system was mobilized in enterobacteria at a frequency lower than a plasmid lacking this system. In addition, we found that bacteria that possess the EcoVIII restriction-modification system can efficiently release plasmid content to the environment. We have shown that E. coli cells can be naturally transformed with pEC156-derivatives, however, with low efficiency. The transformation protocol employed neither involved chemical agents (e.g. CaCl2) nor temperature shift which could induce plasmid DNA uptake.  相似文献   

2.
We present a method for cloning restriction-modification (R-M) systems that is based on the use of a lethal plasmid (pKILLER). The plasmid carries a functional gene for a restriction endonuclease having the same DNA specificity as the R-M system of interest. The first step is the standard preparation of a representative, plasmid-borne genomic library. Then this library is transformed with the killer plasmid. The only surviving bacteria are those which carry the gene specifying a protective DNA methyltransferase. Conceptually, this in vivo selection approach resembles earlier methods in which a plasmid library was selected in vitro by digestion with a suitable restriction endonuclease, but it is much more efficient than those methods. The new method was successfully used to clone two R-M systems, BstZ1II from Bacillus stearothermophilus 14P and Csp231I from Citrobacter sp. strain RFL231, both isospecific to the prototype HindIII R-M system.  相似文献   

3.
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.  相似文献   

4.
Anti-restriction and anti-modification (anti-RM) is the ability to prevent cleavage by DNA restriction–modification (RM) systems of foreign DNA entering a new bacterial host. The evolutionary consequence of anti-RM is the enhanced dissemination of mobile genetic elements. Homologues of ArdA anti-RM proteins are encoded by genes present in many mobile genetic elements such as conjugative plasmids and transposons within bacterial genomes. The ArdA proteins cause anti-RM by mimicking the DNA structure bound by Type I RM enzymes. We have investigated ArdA proteins from the genomes of Enterococcus faecalis V583, Staphylococcus aureus Mu50 and Bacteroides fragilis NCTC 9343, and compared them to the ArdA protein expressed by the conjugative transposon Tn916. We find that despite having very different structural stability and secondary structure content, they can all bind to the EcoKI methyltransferase, a core component of the EcoKI Type I RM system. This finding indicates that the less structured ArdA proteins become fully folded upon binding. The ability of ArdA from diverse mobile elements to inhibit Type I RM systems from other bacteria suggests that they are an advantage for transfer not only between closely-related bacteria but also between more distantly related bacterial species.  相似文献   

5.
The large conjugative multidrug resistance (MDR) plasmid pOLA52 was sequenced and annotated. The plasmid encodes two phenotypes normally associated with the chromosomes of opportunistic pathogens, namely MDR via a resistance-nodulation-division (RND)-type efflux-pump (oqxAB), and the formation of type 3 fimbriae (mrkABCDF). The plasmid was found to be 51,602 bp long with 68 putative genes. About half of the plasmid constituted a conserved IncX1-type backbone with predicted regions for conjugation, replication and partitioning, as well as a toxin/antitoxin (TA) plasmid addiction system. The plasmid was also classified as IncX1 with incompatibility testing. The conjugal transfer and plasmid maintenance regions of pOLA52 therefore seem to represent IncX1 orthologues of the well-characterized IncX2 plasmid R6K. Sequence homology searches in GenBank also suggested a considerably higher prevalence of IncX1 group plasmids than IncX2. The 21 kb 'genetic load' region of pOLA52 was shown to consist of a mosaic, among other things a fragmented Tn3 transposon encoding ampicillin resistance. Most notably the oqxAB and mrkABCDF cassettes were contained within two composite transposons (Tn6010 and Tn6011) that seemed to originate from Klebsiella pneumoniae, thus demonstrating the capability of IncX1 plasmids of facilitating lateral transfer of gene cassettes between different Enterobacteriaceae.  相似文献   

6.
Genetic manipulation of Staphylococcus aureus is limited by the availability of only a single strain, RN4220, that is capable of easily accepting foreign DNA. Inactivation of the hsdR gene of the SauI type I restriction-modification system was shown previously to be responsible for the high transformation efficiency of RN4220 (D. E. Waldron and J. A. Lindsay, J Bacteriol. 188:5578-5585, 2006). However, deletion of this gene in three different S. aureus strains was not sufficient to make them readily transformable, which would be remarkably useful for genetic studies of this pathogenic organism. These results indicate that another unknown factor(s) is required for the transformable phenotype in S. aureus.Staphylococcus aureus is a major pathogen that causes both nosocomial and community-acquired infections, which range from superficial skin infections to severe systemic diseases. It is an extremely versatile pathogen which has developed resistance to virtually all known classes of antibiotics and which expresses various virulence factors that allow it to cause infection in different environments.Molecular genetic studies of S. aureus have resulted in a better understanding of both the virulence and antibiotic resistance mechanisms of this organism, which is crucial for discovery of new approaches to treat staphylococcal infections. One of the limitations in genetically manipulating S. aureus is the fact that there is only a single strain available which can easily accept plasmid DNA isolated from Escherichia coli. This strain, RN4220, is a chemical mutant obtained in the early 1980s by highly mutagenizing NCTC8325-4 (= RN450) with nitrosoguanidine and selecting for a mutant that was able to accept and maintain S. aureus plasmids (10; B. Kreiswirth, personal communication).One of the most important bacterial defenses against uptake of foreign DNA is restriction-modification (R-M) systems. These systems, comprising restriction endonucleases and methyltransferases, recognize and modify specific DNA sequences, protecting “self” DNA from restriction while eliminating potentially harmful foreign DNA which lacks appropriate modification (12). There are three distinct well-characterized types of classical R-M systems, including type II restriction enzymes, which cut DNA within specific recognition sequences and are therefore widely used as molecular biology tools (3). S. aureus strains may contain different R-M systems, including the Sau3AI and Sau96I type II systems (present in isolates of particular lytic groups) (19, 20) or the Sau42I BcgI-like R-M system expressed by S. aureus φ42 lysogens (5). However, the only chromosomal R-M system widely distributed in the sequenced S. aureus isolates is the SauI type I system (21). Type I R-M systems require the products of three genes, hsdR (restriction), hsdM (modification), and hsdS (sequence specificity), and cut DNA at sites remote from the recognition sequence (12). The staphylococcal SauI system includes a single hsdR gene and two copies of the hsdM and hsdS genes, and there is substantial variation between the hsdS genes from different isolates (21). It was recently shown that transformable RN4220 carries a stop mutation in the sauI hsdR gene and that complementation with a functional copy of this gene restores a nontransformable phenotype (21). An hsdR mutant does not cleave foreign unmodified DNA, but it does modify incoming DNA, which therefore is not cleaved when it is transferred to other S. aureus strains that contain an identical R-M system. For this reason, RN4220 has become an essential intermediate for laboratory manipulation of S. aureus, despite its limited clinical relevance. DNA first introduced into RN4220 by electroporation can then be transferred into other laboratory strains (for example, by phage transduction).The relevance of the SauI type I R-M system for horizontal transfer of foreign DNA in different S. aureus isolates in nature has been confirmed with bovine isolates that are hypersusceptible to gene transfer from enterococci and have stop mutations in each of the two SauI hsdS gene copies (18). These “hyperrecipient” strains may be ideal backgrounds for the acquisition of new antibiotic resistance markers, such as the vanA gene complex present in vancomycin-resistant S. aureus strains (18). However, the existence of a second pathway in S. aureus that blocks horizontal transfer of foreign DNA or of an unknown but necessary factor essential for SauI activity has also been proposed based on the fact that some strains that are hypersusceptible to gene transfer (such as B111 used by Noble et al. [13]) do not have a mutation in any of the five hsd genes (18).The availability of laboratory and clinical strains other than RN4220 that are capable of accepting foreign DNA would be remarkably useful for genetic studies of S. aureus, including studies of virulence and antibiotic resistance mechanisms present only in relevant clinical isolates. Therefore, we have tried to reproduce the hsdR mutation in RN4220 in different backgrounds of widely used laboratory strains in order to generate useful, easily transformable strains.  相似文献   

7.
Transferable lincosamide-macrolide resistance in Bacteroides.   总被引:27,自引:0,他引:27  
R A Welch  K R Jones  F L Macrina 《Plasmid》1979,2(2):261-268
Inter- and intraspecies transfer of resistance to clindamycin, lincomycin, and erythromycin in the strict anaerobe, Bacteroides, is described. This lincosamide-macrolide resistance was found to be specified by a 27 × 106-dalton plasmid, designated pBF4, originally identified in a clinical Bacteroides fragilis isolate. Transfer of this plasmid to a strain of Bacteroides uniformis was demonstrated to occur by a deoxyribonuclease insensitive process which required cell-to-cell contact. Chloroform sterilized donor cell supernatants or filtrates of donor cells did not mediate resistance transfer. Transfer of the antibiotic resistance and pBF4 plasmid deoxyribonucleic acid (DNA) were always coincident. Drug resistant progeny recovered from such matings were able to transfer the pBF4 plasmid and its associated resistance markers to a suitable B.fragilis recipient strain. Compared to interspecies matings, resistance transfer was 100- to 1000-fold greater between isogenic donor and recipient strains, suggesting the possibility of a host controlled restriction-modification system.  相似文献   

8.
Conjugative Plasmid Transfer in Gram-Positive Bacteria   总被引:24,自引:0,他引:24       下载免费PDF全文
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

9.
Antirestriction proteins ArdA and ArdB are specific inhibitors of type I restriction-modification enzymes. The ardA and yfeB (ardB) genes were cloned from the transmissible plasmid R64 in the pUC18 and pZE21 vectors. The R64 ArdA and ArdB proteins were shown to inhibit only restriction activity of the type I restriction-modification enzyme (EcoKI) in Escherichia coli K12 cells. In contrast to ArdA, ArdB inhibited EcoKI restriction activity only at a high intracellular concentration. Antirestriction activity of ArdB did not depend on the ClpXP protease. The yfeB (ardB) gene of the R64 plasmid is transcribed from a weak promoter located upstream of yfeA.  相似文献   

10.
G.A. Jacoby  L. Sutton 《Plasmid》1982,8(2):141-147
Four additional Pseudomonas R plasmids determining the PaeR7 restriction-modification system have been detected. All are transfer deficient and appear to belong to the same incompatibility group. The Pseudomonas fertility plasmid FP110 determines a different restriction-modification system and also inhibits the propagation of phage B39 by a separate mechanism. Pseudomonas R plasmid pMG73 has a third distinct restriction-modification specificity. PaeFP110 and PaeR73 are proposed as designations for these new plasmid-determined systems for restriction and modification.  相似文献   

11.
Detection of plasmid DNA uptake in river bacteria at the single-cell level was carried out by rolling-circle amplification (RCA). Uptake of a plasmid containing the green fluorescent protein gene (gfp) by indigenous bacteria from two rivers in Osaka, Japan, was monitored for 506 h using this in situ gene amplification technique with optimized cell permeabilization conditions. Plasmid uptake determined by in situ RCA was compared to direct counts of cells expressing gfp under fluorescence microscopy to examine differences in detection sensitivities between the two methods. Detection of DNA uptake as monitored by in situ RCA was 20 times higher at maximum than that by direct counting of gfp-expressing cells. In situ RCA could detect bacteria taking up the plasmid in several samples in which no gfp-expressing cells were apparent, indicating that in situ gene amplification techniques can be used to determine accurate rates of extracellular DNA uptake by indigenous bacteria in aquatic environments.  相似文献   

12.
The bacteriophage resistance plasmid pAH90 (26,490 bp) is a natural cointegrate plasmid formed via homologous recombination between the type I restriction-modification specificity determinants (hsdS) of two smaller lactococcal plasmids, pAH33 (6,159 bp) and pAH82 (20,331 bp), giving rise to a bacteriophage-insensitive mutant following phage challenge (D. O'Sullivan, D. P. Twomey, A. Coffey, C. Hill, G. F. Fitzgerald, and R. P. Ross, Mol. Microbiol. 36:866–876; 2000). In this communication we provide evidence that the recombination event is favored by phage infection. The entire nucleotide sequence of plasmid pAH90 was determined and found to contain 24 open reading frames (ORFs) responsible for phenotypes which include restriction-modification, phage adsorption inhibition, plasmid replication, cadmium resistance, cobalt transport, and conjugative mobilization. The cadmium resistance property, encoded by the cadA gene, which has an associated regulatory gene (cadC), is of particular interest, as it facilitated the selection of pAH90 in other phage-sensitive lactococci after electroporation. In addition, we report the identification of a group II self-splicing intron bounded by two exons which have the capacity to encode a relaxase implicated in conjugation in gram-positive bacteria. The functionality of this intron was evident by demonstrating splicing in vivo. Given that pAH90 encodes potent phage defense systems which act at different stages in the phage lytic cycle, the linkage of these with a food-grade selectable marker on a replicon that can be mobilized among lactococci has significant potential for natural strain improvement for industrial dairy fermentations which are susceptible to phage inhibition.  相似文献   

13.
Prochlorococcus is the smallest oxygenic phototroph yet described. It numerically dominates the phytoplankton community in the mid-latitude oceanic gyres, where it has an important role in the global carbon cycle. The complete genomes of several Prochlorococcus strains have been sequenced, revealing that nearly half of the genes in each genome are of unknown function. Genetic methods, such as reporter gene assays and tagged mutagenesis, are critical to unveiling the functions of these genes. Here, we describe conditions for the transfer of plasmid DNA into Prochlorococcus strain MIT9313 by interspecific conjugation with Escherichia coli. Following conjugation, E. coli bacteria were removed from the Prochlorococcus cultures by infection with E. coli phage T7. We applied these methods to show that an RSF1010-derived plasmid will replicate in Prochlorococcus strain MIT9313. When this plasmid was modified to contain green fluorescent protein, we detected its expression in Prochlorococcus by Western blotting and cellular fluorescence. Further, we applied these conjugation methods to show that a mini-Tn5 transposon will transpose in vivo in Prochlorococcus. These genetic advances provide a basis for future genetic studies with Prochlorococcus, a microbe of ecological importance in the world's oceans.  相似文献   

14.
Transformation of Nicotiana tabacum leaf explants was attempted with Escherichia coli as a DNA donor either alone or in combination with Agrobacterium tumefaciens. We constructed E. coli donor strains harboring either the promiscuous IncP-type or IncN-type conjugal transfer system and second plasmids containing the respective origins of transfer and plant-selectable markers. Neither of these conjugation systems was able to stably transform plant cells at detectable levels, even when VirE2 was expressed in the donor cells. However, when an E. coli strain expressing the IncN-type conjugation system was coinoculated with a disarmed A. tumefaciens strain, plant tumors arose at high frequencies. This was caused by a two-step process in which the IncN transfer system mobilized the entire shuttle plasmid from E. coli to the disarmed A. tumefaciens strain, which in turn processed the T-DNA and transferred it to recipient plant cells. The mobilizable plasmid does not require a broad-host-range replication origin for this process to occur, thus reducing its size and genetic complexity. Tumorigenesis efficiency was further enhanced by incubation of the bacterial strains on medium optimized for bacterial conjugation prior to inoculation of leaf explants. These techniques circumvent the need to construct A. tumefaciens strains containing binary vectors and could simplify the creation of transgenic plants.  相似文献   

15.
Natural competence is a process by which bacteria construct a membrane-associated machine for the uptake and integration of exogenous DNA. Many bacteria harbor genes for the DNA uptake machinery and yet are recalcitrant to DNA uptake for unknown reasons. For example, domesticated laboratory strains of Bacillus subtilis are renowned for high-frequency natural transformation, but the ancestral B. subtilis strain NCIB3610 is poorly competent. Here we find that endogenous plasmid pBS32 encodes a small protein, ComI, that inhibits transformation in the 3610 strain. ComI is a single-pass trans-membrane protein that appears to functionally inhibit the competence DNA uptake machinery. Functional inhibition of transformation may be common, and abolishing such inhibitors could be the key to permitting convenient genetic manipulation of a variety of industrially and medically relevant bacteria.  相似文献   

16.
The use of genetically engineered bacteria in natural environments constitutes a risk of transfer of recombinant DNA to the indigenous bacteria. However, chromosomal genes are believed to be less likely to transfer than genes on mobilizable and conjugative plasmids. To study this assumption, horizontal transfer of a recombinant gene cassette inserted into the chromosome of a Pseudomonas stutzeri strain, into a mobilizable plasmid (pAGM42), and into a conjugative plasmid (pKJK5) isolated from barley rhizosphere was investigated. Horizontal transfer efficiencies of the gene cassette inserted into a conjugative plasmid was 8.20 × 10−3 transconjugants/(donors × recipients)1/2 in the rhizosphere and 4.57 × 10−2 transconjugants/(donors × recipients)1/2 in the spermosphere. Mobilization of the plasmid pAGM42 by the plasmids RP4 and pKJK5 was also detected at high levels in the microcosms, transfer efficiencies were up to 4.36 × 10−3 transconjugants/(donors × recipients)1/2. Transfer of chromosomal encoded genes could not be detected in the microcosms by conjugation or transformation. However, transformation did occur by using the same bacterial strains under laboratory conditions. The rhizosphere and especially the spermosphere thus proved to be hot spot environments providing favorable conditions for gene transfer by mobilization and conjugation, but these environments did not support transformation at a detectable level. Received: 21 July 2000 / Accepted: 21 August 2000  相似文献   

17.
Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10−8 to 6.0 × 10−3 CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni.  相似文献   

18.
Rhizobium leguminosarum strain VF39SM contains two plasmids that have previously been shown to be self-transmissible by conjugation. One of these plasmids, pRleVF39b, is shown in this study to carry a set of plasmid transfer genes that differs significantly from conjugation systems previously studied in the rhizobia but is similar to an uncharacterized set of genes found in R. leguminosarum bv. trifolii strain WSM2304. The entire sequence of the transfer region on pRleVF39b was determined as part of a genome sequencing project, and the roles of the various genes were examined by mutagenesis. The transfer region contains a complete set of mating pair formation (Mpf) genes, a traG gene, and a relaxase gene, traA, all of which appear to be necessary for plasmid transfer. Experimental evidence suggested the presence of two putative origins of transfer within the gene cluster. A regulatory gene, trbR, was identified in the region between traA and traG and was mutated. TrbR was shown to function as a repressor of both trb gene expression and plasmid transfer.  相似文献   

19.
Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling.  相似文献   

20.
To better understand the DNA restriction-modification (R-M) systems for more amenable strain development of the alternative industrial ethanologen, Zymomonas mobilis, three gene knockout mutants were constructed. The gene knockout mutants were tested for their DNA restriction activities by the determination of transformation efficiency using methylated and unmethylated foreign plasmid DNAs. Inactivation of a putative mrr gene encoded by ZMO0028 (zmrr) resulted in a 60-fold increase in the transformation efficiency when unmethylated plasmid DNA was used. This indicated that the putative mrr gene may serve as a type IV restriction-modification system in Z. mobilis ZM4. To assign the function of a putative type I DNA methyltransferase encoded by ZMO1933 (putative S subunit) and ZMO1934 (putative M subunit), the putative S subunit was inactivated. The gene inactivation of ZMO1933 resulted in a 30-fold increase in the transformation efficiency when methylated plasmid DNA was introduced, indicating that the putative S subunit possibly serves as a part of functional type I R-M system(s). Growth studies performed on the mutant strains indicate inactivation of the type I S subunit resulted in a lower maximum specific glucose consumption rate and biomass yield, while inactivation of the type IV Zmrr had the opposite effect, with an increase in the maximum specific growth rate and biomass yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号