首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Australia has had the highest rate of mammal extinctions in the past two centuries when compared to other continents. Frequently cited threats include habitat loss and fragmentation, changed fire regimes and the impact of introduced predators, namely the red fox (Vulpes vulpes) and the feral cat (Felis catus). Recent studies suggest that Australia's top predator, the dingo (Canis dingo), may have a suppressive effect on fox populations but not on cat populations. The landscape of fear hypothesis proposes that habitat used by prey species comprises high to low risk patches for foraging as determined by the presence and ubiquity of predators within the ecosystem. This results in a landscape of risky versus safe areas for prey species. We investigated the influence of habitat and its interaction with predatory mammals on the occupancy of medium‐sized mammals with a focus on threatened macropodid marsupials (the long‐nosed potoroo [Potorous tridactylous] and red‐legged pademelon [Thylogale stigmatica]). We assumed that differential use of habitats would reflect trade‐offs between food and safety. We predicted that medium‐sized mammals would prefer habitats for foraging that reduce the risk of predation but that predators would have a positive relationship with medium‐sized mammals. We variously used data from 298 camera trap sites across nine conservation reserves in subtropical Australia. Both dingoes and feral cats were broadly distributed, whilst the red fox was rare. Long‐nosed potoroos had a strong positive association with dense ground cover, consistent with using habitat complexity to escape predation. Red‐legged pademelons showed a preference for open ground cover, consistent with a reliance on rapid bounding to escape predation. Dingoes preferred areas of open ground cover whereas feral cats showed no specific habitat preference. Dingoes were positively associated with long‐nosed potoroos whilst feral cats were positively associated with red‐legged pademelons. Our study highlights the importance of habitat structure to these threatened mammals and also the need for more detailed study of their interactions with their predators.  相似文献   

3.
The high failure rate of threatened species translocations has prompted many managers to fence areas to protect wildlife from introduced predators. However, conservation fencing is expensive, restrictive and exacerbates prey naïveté reducing the chance of future co‐existence between native prey and introduced predators. Here, we ask whether two globally threatened mammal species protected in fenced reserves, with a history of predation‐driven decline and reintroduction failure, could co‐exist with introduced predators. We defined co‐existence as population persistence for at least 3 years and successful recruitment. We manipulated the density of feral cats within a large fenced paddock and measured the impact on abundance and reproduction of 353 reintroduced burrowing bettongs and 47 greater bilbies over 3 years. We increased cat densities from 0.038 to 0.46 per square km and both threatened species survived, reproduced and increased their population size. However, a previous reintroduction trial of 66 bettongs into the same paddock found one red fox (Vulpes vulpes), at a density of 0.027 per square km, drove the bettong population extinct within 12 months. Our results show that different predator species vary in their impact and that despite a history of reintroduction failure, threatened mammal species can co‐exist with low densities of feral cats. There may be a threshold density below which it is possible to maintain unfenced populations of reintroduced marsupials. Understanding the numerical relationships between population densities of introduced predators and threatened species is urgently needed if these species are to be re‐established at landscape scales. Such knowledge will enable a priori assessment of the risk of reintroduction failure thereby increasing the likelihood of reintroduction success and reducing the financial and ethical cost of failed translocations.  相似文献   

4.
Native mammals across northern Australia have suffered severe decline, with feral cats (Felis catus), introduced herbivores and changed fire regimes being implicated as drivers. However, uncertainty surrounding the relative contribution of each of these threats, and the interactions between them, is limiting the development of effective management strategies. The absence of introduced herbivores and cane toads (Rhinella marina) on Groote Eylandt, Northern Territory, provides an opportunity to evaluate some hypothesised threats in isolation of others. We used camera traps to investigate the correlates of native mammal distribution and abundance at 112 lowland savanna sites across Groote Eylandt. Two large grids of camera traps were also deployed to obtain estimates of feral cat density. We hypothesised that native mammal populations would be negatively associated with feral cat occupancy as well as frequent, large fires. Native mammal site‐occupancy on Groote Eylandt was generally higher compared to mainland Northern Territory. Feral cats were infrequently detected, precluding both an estimate of feral cat density and an evaluation of the relationship between feral cats and native mammals. We found no evidence that native mammal site‐occupancy or relative abundance is negatively associated with frequent, large fires. The relatively healthy state of native mammal populations on Groote Eylandt is likely due to the low density of feral cats, the benign fire regime and the absence of large introduced herbivores and cane toads. However, due to a lack of historical data, the current state of mammals should not be taken as evidence that these populations are safe from decline. This study highlights that the apparent resilience of mammal populations is a result of complex interactions between factors that vary substantially across the landscape. Caution is therefore required when making broad inferences about the drivers of mammal decline from studies that are spatially and temporally limited.  相似文献   

5.
Linear clearings, such as roads and tracks, are an obvious anthropogenic feature in many remote environments, even where infrastructure is sparse. Predator species have been shown to prefer moving down linear clearings, and therefore, clearings could increase predation risk for other species. We investigated whether tracks cleared for seismic surveys are preferentially used by predators and herbivores in a landscape inhabited by bilbies (Macrotis lagotis), a vulnerable species of conservation concern. We used a paired camera trap array to investigate the use of cleared seismic lines at four time points after clearing (1 month, 3 months, 7 months, 48 months) by six mammal species. Bilbies, cattle (Bos indicus/B. taurus), dingoes (Canis familiaris), feral cats (Felis catus) and agile wallabies (Macropus agilis) preferred to use seismic lines compared with adjacent undisturbed vegetation for almost all surveys, while spectacled hare wallabies (Lagorchestes conspicillatus) avoided them. Bilbies and agile wallabies showed similar temporal activity patterns on and off seismic lines but feral cats, dingoes and cattle used seismic lines at different times of day to control areas. We also investigated microhabitat selection by spool tracking individual bilbies. Bilbies selected a route through vegetation that was more open than surrounding vegetation. While spatial and temporal funnelling of bilbies and their predators (especially cats) may increase the frequency of encounter between the two, it is important to note that bilbies were active at significantly different times to predators both on and off seismic lines. The identified selection for seismic lines, and changes in spatial and temporal overlap between species, can be used to develop effective management strategies, to minimize potential impacts on native species.  相似文献   

6.
Habitat degradation contributes to species decline, and habitat quality is an important factor influencing reintroduction success globally. Habitat quality can include a range of physical resources such as nest sites and food resources but also anything that can restrict the use of these resources such as predation risk or competition. In arid Australia, introduced predators are thought to be the primary cause of mammal extinction and reintroduction failure although habitat clearance and alteration are also major causes of population decline. Common brushtail possums are one arid Australian marsupial close to regional extinction. To understand whether habitat quality was limiting their recovery, we reintroduced 148 possums into an area where introduced red foxes were controlled but historic overgrazing had degraded the habitat. We measured both direct (hollow availability, midstorey cover and high‐quality plant foods) and indirect (survival, condition, reproduction, movement) measures of habitat quality. Sixty‐seven released possums and 26 post‐release recruits were radiocollared for up to 2 years after release. Post‐release survival of radiocollared possums was high after 12 months (0.70), and there were no deaths from starvation. Predation by feral cats was the most common cause of mortality, and the open, degraded habitat may have exacerbated predation risk. Continuous breeding, good body condition and comparative home ranges with other sites suggested that food resources were not limiting. Possums used natural tree hollows in Eucalyptus spp. with no use of artificial nest boxes. Results suggest that historically degraded habitat was not a barrier to short‐term reintroduction success when foxes were controlled and natural tree hollows were plentiful. However, demographic data on hollow‐bearing tree species suggest a possible future decline in availability of hollows. These factors, combined with the unknown effects of drought, and synergistic effects of predation and poor quality habitat, suggest long‐term reintroduction success may require improved habitat and cat control.  相似文献   

7.
Australian arid zone mammal species within the Critical Weight Range (CWR) of 35 g–5.5 kg have suffered disproportionately in the global epidemic of contemporary faunal extinctions. CWR extinctions have been attributed largely to the effects of introduced or invasive mammals; however, the impact of these threatening processes on smaller mammals and reptiles is less clear. The change in small mammal and reptile assemblages after the removal of rabbits, cats and foxes was studied over a 6‐year period in a landscape‐scale exclosure in the Australian arid zone. Rodents, particularly Notomys alexis and Pseudomys bolami, increased to 15 times higher inside the feral‐proof Arid Recovery Reserve compared with outside sites, where rabbits, cats and foxes were still present. Predation by cats was thought to exert the greatest influence on rodent numbers owing to the maintenance of the disparity in rodent responses through dry years and the differences in dietary preferences between rabbits and P. bolami. The presence of introduced Mus domesticus or medium‐sized re‐introduced mammal species did not significantly affect resident small mammal or reptile abundance. Abundance of most dasyurids and small lizards did not change significantly after the removal of feral animals although reductions in gecko populations inside the reserve may be attributable to second order trophic interactions or subtle changes in vegetation structure and cover. This study suggests that populations of rodent species in northern South Australia below the CWR may also be significantly affected by introduced cats, foxes and/or rabbits and that a taxa specific model of Australian mammal decline may be more accurate than one based on body weight.  相似文献   

8.
Cats are among the most successful and damaging invaders on islands and a significant driver of extinction and endangerment. Better understanding of their ecology can improve effective management actions such as eradication. We reviewed 72 studies of insular feral cat diet from 40 islands worldwide. Cats fed on a wide range of species from large birds and medium sized mammals to small insects with at least 248 species consumed (27 mammals, 113 birds, 34 reptiles, 3 amphibians, 2 fish and 69 invertebrates). Three mammals, 29 birds and 3 reptiles recorded in the diet of cats are listed as threatened by the IUCN. However, a few species of introduced mammals were the most frequent prey, and on almost all islands mammals and birds contributed most of the daily food intake. Latitude was positively correlated with the predation of rabbits and negatively with the predation of reptiles and invertebrates. Distance from landmass was positively correlated with predation on birds and negatively correlated with the predation of reptiles. The broad range of taxa consumed by feral cats on islands suggests that they have the potential to impact almost any native species, even the smallest ones under several grams, that lack behavioral, morphological or life history adaptations to mammalian predators. Insular feral cat??s reliance on introduced mammals, which evolved with cat predation, suggests that on many islands, populations of native species have already been reduced.  相似文献   

9.
Habitat modification and invasive species are among the most important contemporary drivers of biodiversity loss. These two threatening processes are often studied independently and few studies have focused on how they interact to influence species declines. Here we assess the predation pressure placed on the threatened great desert skink (Liopholis kintorei) and how this interacts with fire‐induced habitat modifications. We collected daily track data of potential predators for 1 month at 30 great desert skink burrow‐systems where vegetation cover varied significantly after experimental burns. We used these data to evaluate potential predation pressure at the burrow‐system and assess whether fire influenced predator pressure. We supplemented this analysis by documenting predation via the inspection of large mammalian predator scats collected from great desert skink habitat. The level of feral cat activity at a burrow‐system entrance was significantly higher than that of any other potential predator, however fire had no effect on the visitation rates of feral cats, dingoes or large snakes to great desert skink burrow‐systems. The remains of great desert skink were found significantly more frequently in feral cat scats, compared to fox and dingo scats. We provide the first direct evidence that feral cats are a significant predator for great desert skink, thus supporting the hypothesis that feral cat predation is a key threatening process. Feral cat activity was not influenced by small‐scale experimental burns, however, this does not preclude an effect of larger scale fires and we recommend further research exploring this possible interaction.  相似文献   

10.
Australia has contributed a disproportionate number of the world's mammal extinctions over the past 200 years, with the greatest loss of species occurring through the continent's southern and central arid regions. Many taxonomically and ecologically similar species are now undergoing widespread decline across the northern Australian mainland, possibly driven by predation by feral cats and changed fire regimes. Here, we report marked recent declines of native mammal species in one of Australia's few remaining areas that support an intact mammal assemblage, Melville Island, the largest island off the northern Australian coast. We have previously reported a marked decline on Melville Island of the threatened brush‐tailed rabbit‐rat (Conilurus penicillatus) over the period 2000–2015, linked to predation by feral cats. We now report a 62% reduction in small mammal trap‐success and a 36% reduction in site‐level species richness over this period. There was a decrease in trap‐success of 90% for the northern brown bandicoot (Isoodon macrourus), 64% for the brush‐tailed rabbit‐rat and 63% for the black‐footed tree‐rat (Mesembriomys gouldii), but no decline for the common brushtail possum (Trichosurus vulpecula). These results suggest that populations of native mammals on Melville Island are exhibiting similar patterns of decline to those recorded in Kakadu National Park two decades earlier, and across the northern Australian mainland more generally. Without the implementation of effective management actions, these species are likely to be lost from one of their last remaining strongholds, threatening to increase Australia's already disproportionate contribution to global mammal extinctions.  相似文献   

11.
Domestic cats are suspected to have an impact on wild populations of birds and small mammals, but published reports of predation on bats are either rare or anecdotal. We based our study on 1012 records of bats admitted at four wildlife rescue centres in peninsular Italy in 2009–2011. We hypothesized that (1) cats prevalently prey on bats emerging from roosts, so newborns or non volant juveniles should be less exposed to predation; (2) because cats occur in human settlements, the bat species most frequently involved are house-roosting (3) predation is season-biased, most events being more likely to take place in summer when females congregate in roosts to reproduce; (4) predation events concentrate in sparse-urban and rural areas, where free-ranging cats occur more frequently; and (5) some individual cats may specialize in capturing bats. We found that predation by cats was the first cause of rescue for bats in the study area, accounting for 28.7% of records of adult bats admitted to rehabilitation centres. Although most bats caught by cats belonged to house-roosting species, at least 3 of the 11 species affected were tree- or cave-roosting. Predation affected more frequently adult females in summer and thus threatened reproductive colonies, which were often subjected to repeated predations. As predicted, predation events were associated with land cover, being more abundant in rural and sparse urban areas, where cats are more often allowed to stay outdoor, as confirmed by the results of a cat owner survey we carried out. Cats are explorative mammals, so they may be easily attracted at bat roosts by sensory cues involving sound, smell and vision. Our analysis covered a broad geographical area over a relatively long period and suggests that the threat posed to bats by cats may be significant and should be carefully considered in conservation plans. Strategies to mitigate this impact should encompass the control of feral cat populations and indoor restriction of owned cats at least where predation on bats is probable.  相似文献   

12.
The Yelkouan shearwater, Puffinus yelkouan, is an endangered Mediterranean endemic species of burrowing petrel threatened by feral cats. The life-history parameters of a small population of Yelkouan shearwaters on the Mediterranean island, Port-Cros, were studied in conjunction with the diet of feral cats, to examine the birds’ vulnerability to introduced cats. Yelkouan shearwaters were the birds most frequently found in cat scats, with 431 ± 72 birds killed per year, and predation highest during the pre-laying period. A demographic model was created using data for P. yelkouan and for closely related shearwater species. Without cat predation, only two of four survival rate scenarios led to a mean growth rate (λ) ≥ 1. The model was constrained to have a stable population growth rate and used to predict predation scenarios compatible with the observed population stability, because the population under study has remained stable at around 180 pairs for at least 20 years despite feral cat predation. The results of assuming that the population is closed were inconsistent with the estimated mortalities due to feral cats, while it was possible to reconcile the observed numbers of breeding pairs with the observed mortalities due to cats by assuming that Port-Cros Island is a sink sustained by immigration. This illustrates that small colonies may need to be sustained by larger ones to avoid being driven to extinction. Unfortunately, the absence of a large geographic-scale ringing program makes the precise identification of the origin of the immigrants impossible in this case.  相似文献   

13.
Differences in availability of food resources are often manifested in the differentiation of feeding habits of closely related mammal species. Therefore, we assumed that the diet composition and trophic niche of house (i.e., highly dependent on human households), feral (i.e. independent on human households) domestic cats (Felis silvestris catus) and wildcats (Felis s. silvestris) differs. Based on the literature data from Europe (53 study sites), we compared the diet of these three felids analyzed with use of indirect methods (stomach and scat analyses). In the case of the house cat, we additionally compared consumption data obtained directly from prey brought home. Data were expressed as the relative frequency of occurrence to compare dietary patterns. The main prey of the three cat types were small mammals in different ratios. According to the stomach and scat samples, the diet composition of the cat types showed differences in the consumption of rodents, insectivores, wild ungulates, and household food, supporting the “dietary differences originate from varying resources” hypothesis. More opportunistic house cats had a broader trophic niche than feeding specialist wildcats, while feral cats had an intermediate position. The trophic niche breadth of all three cat types increased along a latitudinal gradient from northern to southern areas of Europe. The predation of the house cat which was examined from prey brought home differed from the data obtained by indirect diet analysis; however, it yielded similar results to the diet of the feral cat and the wildcat. Due to their high numbers and similarity of its diet to the wildcat, house cats are a threat to wild animals; therefore, their predation pressure needs to be further investigated.  相似文献   

14.
The domestic cat Felis catus has become a feral predator and conservation threat in many regions of the world. In the northern tropical savannas of Australia, there is limited data on feral cat diet, and there is evidence that some mammal populations in this region are starting to show signs of significant population decline. A total of 169 cat stomach samples were collected from north-eastern Australia from 1996 to 1998. Samples were collected from grassland and woodland habitats in winter and summer periods. A total of 106 unique prey types (grouped into 59 categories), representing 974 items, were recorded from all samples of which 8% were invertebrates, 9% amphibians, 41% reptiles, 20% birds, and 22% mammals. Relative significance of prey items was examined by calculating the Index of Relative Importance. Chi-square comparisons of frequency differences among habitat, season, and sex of cat were also undertaken. The most important prey items were grasshoppers (Orthoptera), centipedes (Chiloptera), dunnarts (Sminthopsis spp.), planigales (Planigale spp.), rabbits, quails (Turnix spp., Coturnix sp.), and geckos (Oedura spp., Gehyra spp.). Amphibians and invertebrates were more frequent in summer (wet season) samples, and mammals were more frequent in winter. Similarly, there were more amphibians in woodland samples and more invertebrates in grasslands. There was high dietary overlap and little difference in the diet of male versus female cats. Increasing cat predation in northern Australia may significantly affect the conservation of key groups already under decline (e.g., mammals) and careful innovative solutions to stem cat predation are needed.  相似文献   

15.
Cats are generalist predators that have been widely introduced to the world's ~179 000 islands. Once introduced to islands, cats prey on a variety of native species many of which lack evolved defenses against mammalian predators and can suffer severe population declines and even extinction. As islands house a disproportionate share of terrestrial biodiversity, the impacts of invasive cats on islands may have significant biodiversity impacts. Much of this threatened biodiversity can be protected by eradicating cats from islands. Information on the relative impacts of cats on different native species in different types of island ecosystems can increase the efficiency of this conservation tool. We reviewed feral cat impacts on native island vertebrates. Impacts of feral cats on vertebrates have been reported from at least 120 different islands on at least 175 vertebrates (25 reptiles, 123 birds, and 27 mammals), many of which are listed by the International Union for the Conservation of Nature. A meta‐analysis suggests that cat impacts were greatest on endemic species, particularly mammals and greater when non‐native prey species were also introduced. Feral cats on islands are responsible for at least 14% global bird, mammal, and reptile extinctions and are the principal threat to almost 8% of critically endangered birds, mammals, and reptiles.  相似文献   

16.
Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.  相似文献   

17.
The effect of different levels of cattle grazing on an arid Australian small terrestrial mammal and lizard assemblage was assessed in a long‐tem series of cross‐fence comparisons. Cross‐fenced sites were closely matched for edaphic and vegetation characteristics and experienced near identical weather patterns, to ensure that cattle grazing pressure was the principal determinant of any differences in fauna assemblages. In addition, the effects of removal of cattle, cats, foxes and rabbits from three of these long‐term monitoring sites were assessed to determine the relative impacts of cattle grazing and feral animals. Small mammal captures, with the exception of Mus musculus, revealed a significant negative response to cattle grazing pressure but this response was of a considerably lower magnitude than the dramatic increase in rodent captures and species richness within the feral animal‐proof Arid Recovery Reserve. Higher kangaroo numbers in ungrazed controls, compared with treatments grazed by cattle, possibly negated the benefits to small mammals of removing cattle grazing. No reptile species responded significantly to the grazing treatments although reptile richness and captures of geckos and skinks were the lowest and agamid captures were the highest at heavily grazed sites. Nephrurus levis was the only reptile species to increase significantly, while captures of some smaller geckoes declined, within the feral‐proof treatment. Feral predation exerted a more significant effect on most small mammal species than the levels of cattle grazing assessed in this study, yet reptile responses to grazing or feral animals were less apparent and were likely primarily driven by changes in vegetation cover or secondary trophic impacts.  相似文献   

18.
Feral cat Felis catus predation on seabirds has been well documented; however, details regarding shifts in feral cat diet in relation to seabird availability, seabird predation rate and impact on seabird population dynamics are scarce. Here, we present data documenting a seasonal shift in feral cat diet at Juan de Nova Island, Mozambique Channel. We also quantify sooty tern Sterna fuscata predation by feral cats and examine the impact on sooty terns over both the short term (by removing individual cats from sub-colonies) and over the longer term by highlighting their influence on population growth rate ( λ ) using a deterministic matrix model. Cat diet shifted dramatically from insects, rats and mice outside the tern breeding season to primarily terns when terns were breeding. The predation rate of sooty terns at Juan de Nova was estimated at 5.94 terns cat−1 day−1, with a proportion of these (22%) being killed without being consumed ('surplus kills'). When only one cat was removed from each sub-colony, tern predation declined tenfold in the short term. From our matrix model, the annual growth rate for sooty terns was 1.01 in the absence of cat predation. It remained above one until a predation impact equivalent to approximately three times the estimated cat density (12.04 per km2) was incorporated. Our results demonstrate that cats preferentially predate and have an impact on breeding sooty terns at Juan de Nova, and that an increase in cat density could lead to negative effects on population growth, despite the large breeding tern population.  相似文献   

19.
20.
Abstract

The identification of introduced and native predators is important for many conservation studies within New Zealand. Carcasses of Hutton's shearwaters were collected over three field seasons, and where predation was probable, the bodies were autopsied. Paired bites identified stoats as the principal predator of Hutton's shearwater, but also revealed that a feral cat was present within the colony. Stoats killed their prey with a bite to the back of the neck or head, and commenced feeding on the neck or head. Despite the limited number of cat‐killed birds, cats appeared to feed on Hutton's shearwaters differently from stoats, starting on the breast muscles. Harriers and kea left sign that allowed birds killed or scavenged by these native birds to be distinguished from those killed by stoats or cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号