首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many picornaviruses use cell-surface molecules belonging to the immunoglobulin superfamily (IgSF) as their cellular receptors. These molecules usually consist of tandem repeats of between two and five Ig-like domains whose amino-terminal domains (D1) interact with invading viruses, with their carboxy-terminal sections comprising a transmembrane and a short cytoplasmic region. Most rhino- and enteroviruses, belonging to the Picornavirus family, use a canyon-like feature on their surface to attach to cellular receptors. Binding into the canyon destabilizes the virus and thus initiates the uncoating process. By contrast, non-IgSF molecules, when used by picornaviruses as receptors, bind outside the canyon and do not cause viral instability.  相似文献   

2.
周跃钢 《生命科学》2010,(8):749-754
病毒感染的初期事件包括病毒与细胞表面受体的相互作用和进入细胞的过程,而病毒的宿主细胞专一性很大程度上取决于这一阶段的专一识别特征和特殊要求。人乳头状瘤病毒、人免疫缺陷病毒和单纯疱疹病毒是感染人类的几种常见病原物,该文简要综述和讨论了与人体健康关系密切的这三种重要病毒表面的蛋白组分、宿主细胞表面受体及其相互作用和病毒的细胞进入的研究进展,以及在以病毒的细胞进入过程为靶点的抗病毒药物研发中的应用前景。  相似文献   

3.
We tested chemokine receptor subset usage by diverse, well-characterized primary viruses isolated from peripheral blood by monitoring viral replication with CCR1, CCR2b, CCR3, CCR5, and CXCR4 U87MG.CD4 transformed cell lines and STRL33/BONZO/TYMSTR and GPR15/BOB HOS.CD4 transformed cell lines. Primary viruses were isolated from 79 men with confirmed human immunodeficiency virus type 1 (HIV-1) infection from the Chicago component of the Multicenter AIDS Cohort Study at interval time points. Thirty-five additional well-characterized primary viruses representing HIV-1 group M subtypes A, B, C, D, and E and group O and three primary simian immunodeficiency virus (SIV) isolates were also used for these studies. The restricted use of the CCR5 chemokine receptor for viral entry was associated with infection by a virus having a non-syncytium-inducing phenotype and correlated with a reduced rate of disease progression and a prolonged disease-free interval. Conversely, broadening chemokine receptor usage from CCR5 to both CCR5 and CXCR4 was associated with infection by a virus having a syncytium-inducing phenotype and correlated with a faster rate of CD4 T-cell decline and progression of disease. We also observed a greater tendency for infection with a virus having a syncytium-inducing phenotype in men heterozygous for the defective CCR5 Δ32 allele (25%) than in those men homozygous for the wild-type CCR5 allele (6%) (P = 0.03). The propensity for infection with a virus having a syncytium-inducing phenotype provides a partial explanation for the rapid disease progression among some men heterozygous for the defective CCR5 Δ32 allele. Furthermore, we did not identify any primary viruses that used CCR3 as an entry cofactor, despite this CC chemokine receptor being expressed on the cell surface at a level commensurate with or higher than that observed for primary peripheral blood mononuclear cells. Whereas isolates of primary viruses of SIV also used STRL33/BONZO/TYMSTR and GPR15/BOB, no primary isolates of HIV-1 used these particular chemokine receptor-like orphan molecules as entry cofactors, suggesting a limited contribution of these other chemokine receptors to viral evolution. Thus, despite the number of chemokine receptors implicated in viral entry, CCR5 and CXCR4 are likely to be the physiologically relevant chemokine receptors used as entry cofactors in vivo by diverse strains of primary viruses isolated from blood.  相似文献   

4.
Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process. Interactions of viral proteins with their receptors direct which membranes fuse and viral fusion proteins then drive the process. These fusion proteins operate on lipid assemblies, whose physical and mechanical properties are equally important to the proper functioning of the process. Lipids contribute to the viral fusion process by virtue of their distinct chemical structure, composition and/or their preferred partitioning into specific microdomains in the plasma membrane called 'rafts'. An involvement of lipid rafts in viral entry and membrane fusion has been examined recently. However, the mechanism(s) by which lipids as dynamic raft components control viral envelope-glycoprotein-triggered fusion is not clear. This paper will review literature findings on the contribution of the two raft-associated lipids, cholesterol and sphingolipids in viral entry.  相似文献   

5.
To infect mammalian cells, enveloped viruses have to deposit their nucleocapsids into the cytoplasm of a host cell. Membrane fusion represents a key element in this entry mechanism. The fusion activity resides in specific, virally encoded membrane glycoproteins. Some molecular properties of these fusion proteins will be briefly described. These properties will then be correlated to the ability of a virus to fuse with target membranes, and to induce cell-cell fusion. Some molecular and physical parameters affecting virus fusion—at the level of either viral or target membrane or both—and the significance of modelling virus fusion by using synthetic peptides resembling viral fusion peptides, will also be discussed.  相似文献   

6.
Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process. Interactions of viral proteins with their receptors direct which membranes fuse and viral fusion proteins then drive the process. These fusion proteins operate on lipid assemblies, whose physical and mechanical properties are equally important to the proper functioning of the process. Lipids contribute to the viral fusion process by virtue of their distinct chemical structure, composition and/or their preferred partitioning into specific microdomains in the plasma membrane called 'rafts'. An involvement of lipid rafts in viral entry and membrane fusion has been examined recently. However, the mechanism(s) by which lipids as dynamic raft components control viral envelope-glycoprotein-triggered fusion is not clear. This paper will review literature findings on the contribution of the two raft-associated lipids, cholesterol and sphingolipids in viral entry.  相似文献   

7.
Sialic acid-containing compounds play a key role in the initial steps of the paramyxovirus life cycle. As enveloped viruses, their entry into the host cell consists of two main events: binding to the host cell and membrane fusion. Virus adsorption occurs at the surface of the host cell with the recognition of specific receptor molecules located at the cell membrane by specific viral attachment proteins. The viral attachment protein present in some paramyxoviruses (Respirovirus, Rubulavirus and Avulavirus) is the HN glycoprotein, which binds to cellular sialic acid-containing molecules and exhibits sialidase and fusion promotion activities. Gangliosides of the gangliotetraose series bearing the sialic acid N-acetylneuraminic (Neu5Ac) on the terminal galactose attached in α2-3 linkage, such as GD1a, GT1b, and GQ1b, and neolacto-series gangliosides are the major receptors for Sendai virus. Much less is known about the receptors for other paramyxoviruses than for Sendai virus. Human parainfluenza viruses 1 and 3 preferentially recognize oligosaccharides containing N-acetyllactosaminoglycan branches with terminal Neu5Acα2-3Gal. In the case of Newcastle disease virus, has been reported the absence of a specific pattern of the gangliosides that interact with the virus. Additionally, several works have described the use of sialylated glycoproteins as paramyxovirus receptors. Accordingly, the design of specific sialic acid analogs to inhibit the sialidase and/or receptor binding activity of viral attachment proteins is an important antiviral strategy. In spite of all these data, the exact nature of paramyxovirus receptors, apart from their sialylated nature, and the mechanism(s) of viral attachment to the cell surface are poorly understood. The authors would like to dedicate this review to Prof. José A. Cabezas, recently retired who, as well being our mentor and colleague, introduced us into the fascinating field of sialic acid-containing glycoconjugates and viral sialidases at a time when just a very small number of scientists were paying attention to this important field of research. Also, he has been for us a continuous source of inspiration and friendship to us. The ganglioside nomenclature of Svennerholm [1] is used.  相似文献   

8.
Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor– and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.  相似文献   

9.
For many years evidence has accumulated that sialic acids function in cellular interactions either by masking or as a recognition site. However, receptors or adhesion molecules mediating such functions between eukaryotic cells were unknown until about 5 years ago, when it was found that the members of the Selectin family mediate adhesion of leukocytes to specific endothelia through binding to sialylated glycans like sialyl Lewisx. More recently, the Sialoadhesin family of sialic acid-dependent adhesion molecules was defined within the superfamily of immunoglobulin-like molecules. So far, it has been shown that sialoadhesin (Sn), CD22, CD33, the myelin-associated glycoprotein (MAG) and the Schwann cell myelin protein (SMP) belong to this family. In contrast to the Selectins, these proteins are associated with diverse biological processes, i.e. hemopoiesis, neuronal development and immunity. In this review their properties, carbohydrate specificities and potential biological functions are discussed. Finally, we provide perspectives with respect to the nature of ligands, implications of sialic acid modifications and future research.Abbreviations IgSF immunoglobulin superfamily - MAG myelin-associated glycoprotein - Sia sialic acid - SMP Schwann cell myelin protein - Sn sialoadhesin  相似文献   

10.
11.
Rotavirus entry into a cell is a complex multistep process in which different domains of the rotavirus surface proteins interact with different cell surface molecules, which act as attachment and entry receptors. These recently described molecules include several integrins and a heat shock protein, which have been found to be associated with cell membrane lipid microdomains. The requirement during viral entry for several cell molecules, which might be required to be present and organized in a precise fashion, could explain the selective cell and tissue tropism of these viruses. This review focuses on recent data describing the virus-receptor interactions, the role of lipid microdomains in rotavirus infection and the mechanism of rotavirus cell entry.  相似文献   

12.
Cell entry by non-enveloped viruses requires translocation into the cytosol of a macromolecular complex—for double-strand RNA viruses, a complete subviral particle. We have used live-cell fluorescence imaging to follow rotavirus entry and penetration into the cytosol of its ∼700 Å inner capsid particle (“double-layered particle”, DLP). We label with distinct fluorescent tags the DLP and each of the two outer-layer proteins and track the fates of each species as the particles bind and enter BSC-1 cells. Virions attach to their glycolipid receptors in the host cell membrane and rapidly become inaccessible to externally added agents; most particles that release their DLP into the cytosol have done so by ∼10 minutes, as detected by rapid diffusional motion of the DLP away from residual outer-layer proteins. Electron microscopy shows images of particles at various stages of engulfment into tightly fitting membrane invaginations, consistent with the interpretation that rotavirus particles drive their own uptake. Electron cryotomography of membrane-bound virions also shows closely wrapped membrane. Combined with high resolution structural information about the viral components, these observations suggest a molecular model for membrane disruption and DLP penetration.  相似文献   

13.
Many host cell surface proteins, including viral receptors, are incorporated into enveloped viruses. To address the functional significance of these host proteins, murine leukemia viruses containing the cellular receptors for Rous sarcoma virus (Tva) or ecotropic murine leukemia virus (MCAT-1) were produced. These receptor-pseudotyped viruses efficiently infect cells expressing the cognate viral envelope glycoproteins, with titers of up to 105 infectious units per milliliter for the Tva pseudotypes. Receptor and viral glycoprotein specificity and functional requirements are maintained, suggesting that receptor pseudotype infection recapitulates events of normal viral entry. The ability of the Tva and MCAT-1 pseudotypes to infect cells efficiently suggests that, in contrast to human immunodeficiency virus type 1 entry, neither of these retroviral receptors requires a coreceptor for membrane fusion. In addition, the ability of receptor pseudotypes to target infected cells suggests that they may be useful therapeutic reagents for directing infection of viral vectors. Receptor-pseudotyped viruses may be useful for identifying new viral receptors or for defining functional requirements of known receptors. Moreover, this work suggests that the production of receptor pseudotypes in vivo could provide a mechanism for expanded viral tropism with potential effects on the pathogenesis and evolution of the virus.  相似文献   

14.
Cell adhesion molecules (CAMs) are intimately involved in a variety of cellular processes, including development, cell growth, apoptosis, and differentiation. Interaction of CAMs with components of the extracellular matrix (ECM), growth factors, and other CAMs provides an intricate regulatory mechanism for a diverse range of cellular responses. Embigin is a developmentally expressed protein that is a member of the immunoglobulin superfamily (IgSF) class of CAMs. We have identified embigin as a gene expressed during tissue regression in rat prostate and lactating mammary gland following hormonal ablation. In the absence of the appropriate hormone, the secretory epithelial cells of these two tissues undergo successive waves of apoptotic cell death co-incident with extensive reorganization of the surviving tissue. Using Northern analysis, in situ hybridization analysis, RT-PCR, and Western analysis, we have characterized the expression of embigin mRNA and protein in both regressing prostate and mammary gland. During development of the prostate gland, increased expression of embigin is correlated with the appearance of highly organized lumenal and ductal structures. Embigin is also expressed in a variety of adult tissues including heart, liver, lung, and brain. Zoo-blot analysis with the rat embigin cDNA indicates that embigin homologs exist in species as diverse as Homo sapiens and Drosophila melanogaster, suggesting that it has been highly conserved during evolution. Embigin protein is expressed at readily detectable levels in a variety of prostate and mammary cancer cell lines, and in some cell lines the expression of embigin appears to be down-regulated in the presence of ECM. Our data have led us to propose a model in which embigin functions as a regulator of cell/ECM interactions during development and in the homeostasis of normal adult tissues. Dev. Genet. 21:268–278, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
In the past few years, a large number of new chemokines (chemotactic cytokines) and chemokine receptors have been discovered. The growth in knowledge about these molecules has been achieved largely through advances in bioinformatics and the expansion of expression sequence tag (EST) databases. It is now clear that chemokines are crucial in controlling both the development and functioning of leukocytes and that their role is not restricted to cell attraction, as originally assumed. In particular, recent findings provide strong support for the idea that chemokines and their receptors are especially important in the control of viral infection and replication. Thus, specific chemokines are now known to enhance the cytotoxic activity of infected cells, thus inhibiting further virus replication. In addition, some chemokines orchestrate the recruitment of activated leukocytes to foci of infection to aid viral clearance. Viruses, in turn, have evolved various defences against chemokines. These range from the production of proteins that inhibit biological activity of the host chemokine to the hijacking of the chemokine system, whereby certain viruses utilize chemokine receptors for their entry. The latter viral defence can itself be blocked by chemokines. Altogether, these findings illustrate the central role of chemokines in many different phases of the immune response, particularly those aspects involving antiviral defence, a variety and versatility that was not fully appreciated even a few years ago.  相似文献   

16.
Viruses, despite being relatively simple in structure and composition, have evolved to exploit complex cellular processes for their replication in the host cell. After binding to their specific receptor on the cell surface, viruses (or viral genomes) have to enter cells to initiate a productive infection. Though the entry processes of many enveloped viruses is well understood, that of most non-enveloped viruses still remains unresolved. Recent studies have shown that compared to direct fusion at the plasma membrane, endocytosis is more often the preferred means of entry into the target cell. Receptor-mediated endocytic pathways such as the dynamin-dependent clathrin and caveolar pathways are well characterized as viral entry portals. However, many viruses are able to utilize multiple uptake pathways. Fluid phase uptake, though relatively non-specific in terms of its cargo, potentially aids viral infection by its ability to intersect with the endocytic pathway. In fact, many viruses despite using specialized pathways for entry are still able to generate productive infection via fluid phase uptake. Macropinocytosis, a major fluid uptake pathway found in epithelial cells and fibroblasts, is stimulated by growth factor receptors. Many viruses can induce these signaling cascades in cells leading to macropinocytosis. Though endocytic trafficking is utilized by both enveloped and non-enveloped viruses, key differences lie in the way membranes are traversed to deposit the viral genome at its site of replication. This review will discuss recent developments in the rapidly evolving field of viral entry.  相似文献   

17.
Natural killer (NK) cells are circulating lymphocytes that play an important role in the control of viral infections and tumors. Their functions are regulated by several activating and inhibitory receptors. A subset of these receptors in human NK cells are the killer immunoglobulin-like receptors (KIRs), which interact with the highly polymorphic MHC class I molecules. One important function of NK cells is to detect cells that have down-regulated MHC expression (missing-self). Because MHC molecules have non polymorphic regions, their expression could have been monitored with a limited set of monomorphic receptors. Surprisingly, the KIR family has a remarkable genetic diversity, the function of which remains poorly understood. The mouse cytomegalovirus (MCMV) is able to evade NK cell responses by coding “decoy” molecules that mimic MHC class I. This interaction was suggested to have driven the evolution of novel NK cell receptors. Inspired by the MCMV system, we develop an agent-based model of a host population infected with viruses that are able to evolve MHC down-regulation and decoy molecules. Our simulations show that specific recognition of MHC class I molecules by inhibitory KIRs provides excellent protection against viruses evolving decoys, and that the diversity of inhibitory KIRs will subsequently evolve as a result of the required discrimination between host MHC molecules and decoy molecules.  相似文献   

18.
Virus entry: molecular mechanisms and biomedical applications   总被引:9,自引:0,他引:9  
Viruses have evolved to enter cells from all three domains of life--Bacteria, Archaea and Eukaryotes. Of more than 3,600 known viruses, hundreds can infect human cells and most of those are associated with disease. To gain access to the cell interior, animal viruses attach to host-cell receptors. Advances in our understanding of how viral entry proteins interact with their host-cell receptors and undergo conformational changes that lead to entry offer unprecedented opportunities for the development of novel therapeutics and vaccines.  相似文献   

19.
The immunoglobulin superfamily (IgSF) is a heterogenic group of proteins built on a common fold, called the Ig fold, which is a sandwich of two β sheets. Although members of the IgSF share a similar Ig fold, they differ in their tissue distribution, amino acid composition, and biological role. In this paper we report an up-to-date compilation of the IgSF where all known members of the IgSF are classified on the basis of their common functional role (immune system, antibiotic proteins, enzymes, cytokine receptors, etc.) and their distribution in tissue (neural system, extracellular matrix, tumor marker, muscular proteins, etc.), or in species (vertebrates, invertebrates, bacteria, viruses, fungi, and plants). The members of the family can contain one or many Ig domains, comprising two basic types: the constant domain (C), with seven strands, and the variable domain (V), with eight, nine, or ten strands. The different overviews of the IgSF led to the definition of new domain subtypes, mainly concerning the C type, based on the distribution of strands within the two sheets. The wide occurrence of the Ig fold and the much less conserved sequences could have developed from a common ancestral gene and/or from a convergent evolutionary process. Cell adhesion and pattern recognition seem to be the common feature running through the entire family. Received: 4 June 1997 / Accepted: 15 September 1997  相似文献   

20.
Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis—the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3–sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号