首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-diazotrophic Microcystis and filamentous N2-fixing Aphanizomenon and Dolichospermum (formerly Anabaena) co-occur or successively dominate freshwaters globally. Previous studies indicate that dual nitrogen (N) and phosphorus (P) reduction is needed to control cyanobacterial blooms; however, N limitation may cause replacement of non-N2-fixing by N2-fixing taxa. To evaluate potentially counterproductive scenarios, the effects of temperature, nutrients, and zooplankton on the spatio-temporal variations of cyanobacteria were investigated in three large, shallow eutrophic lakes in China. The results illustrate that the community composition of cyanobacteria is primarily driven by physical factors and the zooplankton community, and their interactions. Niche differentiation between Microcystis and two N2-fixing taxa in Lake Taihu and Lake Chaohu was observed, whereas small temperature fluctuations in Lake Dianchi supported co-dominance. Through structural equation modelling, predictor variables were aggregated into ‘composites’ representing their combined effects on species-specific biomass. The model results showed that Microcystis biomass was affected by water temperature and P concentrations across the studied lakes. The biomass of two filamentous taxa, by contrast, exhibited lake-specific responses. Understanding of driving forces of the succession and competition among bloom-forming cyanobacteria will help to guide lake restoration in the context of climate warming and N:P stoichiometry imbalances.  相似文献   

2.
Many types of ecosystems have little or no N2 fixation even when nitrogen (N) is strongly limiting to primary production. Estuaries generally fit this pattern. In contrast to lakes, where blooms of N2-fixing cyanobacteria are often sufficient to alleviate N deficits relative to phosphorus (P) availability, planktonic N2 fixation is unimportant in most N-limited estuaries. Heterocystic cyanobacteria capable of N2 fixation are seldom observed in estuaries where the salinity exceeds 8–10 ppt, and blooms have never been reported in such estuaries in North America. However, we provided conditions in estuarine mesocosms (salinity over 27 ppt) that allowed heterocystic cyanobacteria to grow and fix N2 when zooplankton populations were kept low. Grazing by macrozooplankton at population densities encountered in estuaries strongly suppressed cyanobacterial populations and N2 fixation. The cyanobacteria grew more slowly than observed in fresh waters, at least in part due to the inhibitory effect of sulfate (SO4 2−), and this slow rate of growth increased their vulnerability to grazing. We conclude that interactions between physiological (bottom–up) factors that slow the growth rate of cyanobacteria and ecological (top–down) factors such as grazing are likely to be important regulators excluding planktonic N2 fixation from most Temperate Zone estuaries. Received 26 April 2002; Accepted 12 July 2002.  相似文献   

3.
We investigated the molecular diversity of cyanobacteria and bacteria during a water bloom in a lake with a long history of toxic cyanobacterial blooms (Lake Kastoria, Greece). We also tested the hypothesis whether bloom-forming cyanobacteria are preserved in the lake’s sediment 2 years after the bloom. The dominant cyanobacteria during the bloom included the potentially toxin-producing Microcystis aeruginosa and several other Chroococcales forms closely related to the genus Microcystis. This suggests that the use of cyanobacterial-specific primers seems to be very informative in describing the cyanobacteria during the water blooms. The bacterial community showed high diversity, consisting mostly of singleton and doubleton phylotypes. The majority of the phylotypes were typical lake bacteria including some potential pathogens and toxin metabolising bacteria, suggesting that the dominant toxic cyanobacteria did not have any significant effect on the bacterial community structure. In the sediment, 2 years after the water bloom, no bloom-forming cyanobacteria were retrieved, suggesting that they cannot be preserved in the sediment. Similar to the water column, sediment bacterial diversity was also high, consisting mostly of yet-uncultured bacteria that are related to environments where organic matter degradation takes place.  相似文献   

4.
In this work, we estimate the contributions of the different sources of N incorporated by two N2-fixing cyanobacterial blooms (Anabaena sp. and Microchaete sp.) in the rice fields of Valencia (Spain) during the crop cycles of 1999 and 2000, and evaluate the response of nitrogenase and C assimilation activities to changing irradiances. Our results show that, far from the generally assumed idea that the largest part of the N incorporated by N2-fixing cyanobacterial blooms in rice fields comes from N2 fixation, both cyanobacterial blooms incorporated about three times more N from dissolved combined compounds than from N2 fixation (only about 33–41% of the N incorporated came from N2 fixation). Our results on the photodependence of C and N2 fixation indicate that in both cyanobacterial blooms, N2 fixation showed a steeper initial slope (α) and was saturated with less irradiance than C fixation, suggesting that N2 fixation was more efficient than photosynthesis under conditions of light limitation. At saturating light, N2 fixation and C fixation differed depending on the bloom and on the environmental conditions created by rice plant growth. Carbon assimilation but not nitrogenase activity appeared photoinhibited in the Anabaena but not in the Microchaete bloom in August 1999, when the plants were tall and the canopy was important, and there was no limitation of dissolved inorganic carbon. The opposite was found in the Microchaete bloom of June 2000, when plants were small and produced little shade, and dissolved inorganic carbon was very low.  相似文献   

5.
Cyanobacterial biofertilizers in rice agriculture   总被引:1,自引:0,他引:1  
Floodwater and the surface of soil provide the sites for aerobic phototrophic nitrogen (N) fixation by free-living cyanobacteria and theAzolla-Anabaena symbiotic N2-fixing complex. Free-living cyanobacteria, the majority of which are heterocystous and nitrogen fixing, contribute an average of 20–30 kg N ha-1, whereas the value is up to 600 kg ha-1 for theAzollaAnabaena system (the most beneficial cyanobacterial symbiosis from an agronomic point of view). Synthesis and excretion of organic/growth-promoting substances by the cyanobacteria are also on record. During the last two or three decades a large number of studies have been published on the various important fundamental and applied aspects of both kinds of cyanobacterial biofertilizers (the free-living cyanobacteria and the cyanobacteriumAnabaena azollae in symbiotic association with the water fernAzolla), which include strain identification, isolation, purification, and culture; laboratory analyses of their N2-fixing activity and related physiology, biochemistry, and energetics; and identification of the structure and regulation of nitrogenfixing (nif) genes and nitrogenase enzyme. The symbiotic biology of theAzolla-Anabaena mutualistic N2-fixing complex has been clarified. In free-living cyanobacterial strains, improvement through mutagenesis with respect to constitutive N2 fixation and resistance to the noncongenial agronomic factors has been achieved. By preliminary meristem mutagenesis inAzolla, reduced phosphate dependence was achieved, as were temperature tolerance and significant sporulation/spore germination under controlled conditions. Mass-production biofertilizer technology of free-living and symbiotic (Azolla-Anabaena) cyanobacteria was studied, as were the interacting and agronomic effects of both kinds of cyanobacterial biofertilizer with rice, improving the economics of rice cultivation with the cyanobacterial biofertilizers. Recent results indicate a strong potential for cyanobacterial biofertilizer technology in rice-growing countries, which opens up a vast area of more concerted basic, applied, and extension work in the future to make these self-renewable natural nitrogen resources even more promising at the field level in order to help reduce the requirement for inorganic N to the bare minimum, if not to zero.  相似文献   

6.
Cyanobacteria-plant symbioses play an important role in many ecosystems due to the fixation of atmospheric nitrogen (N) by the cyanobacterial symbiont. The ubiquitous feather moss Pleurozium schreberi (Brid.) Mitt. is colonized by cyanobacteria in boreal systems with low N deposition. Here, cyanobacteria fix substantial amounts of N2 and represent a potential N source. The feather moss appears to be resistant to decomposition, which could be partly a result of toxins produced by cyanobacteria. To assess how cyanobacteria modulated the toxicity of moss, we measured inhibition of bacterial growth. Moss with varying numbers of cyanobacteria was added to soil bacteria to test the inhibition of their growth using the thymidine incorporation technique. Moss could universally inhibit bacterial growth, but moss toxicity did not increase with N2 fixation rates (numbers of cyanobacteria). Instead, we see evidence for a negative relationship between moss toxicity to bacteria and N2 fixation, which could be related to the ecological mechanisms that govern the cyanobacteria – moss relationship. We conclude that cyanobacteria associated with moss do not contribute to the resistance to decomposition of moss, and from our results emerges the question as to what type of relationship the moss and cyanobacteria share.  相似文献   

7.
Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways.  相似文献   

8.
The objective of this study was to characterize the community structure and activity of N2-fixing microorganisms in mature and poorly developed biological soil crusts from both the Colorado Plateau and Chihuahuan Desert. Nitrogenase activity was approximately 10 and 2.5 times higher in mature crusts than in poorly developed crusts at the Colorado Plateau site and Chihuahuan Desert site, respectively. Analysis of nifH sequences by clone sequencing and the terminal restriction fragment length polymorphism technique indicated that the crust diazotrophic community was 80 to 90% heterocystous cyanobacteria most closely related to Nostoc spp. and that the composition of N2-fixing species did not vary significantly between the poorly developed and mature crusts at either site. In contrast, the abundance of nifH sequences was approximately 7.5 times greater (per microgram of total DNA) in mature crusts than in poorly developed crusts at a given site as measured by quantitative PCR. 16S rRNA gene clone sequencing and microscopic analysis of the cyanobacterial community within both crust types demonstrated a transition from a Microcoleus vaginatus-dominated, poorly developed crust to mature crusts harboring a greater percentage of Nostoc and Scytonema spp. We hypothesize that ecological factors, such as soil instability and water stress, may constrain the growth of N2-fixing microorganisms at our study sites and that the transition to a mature, nitrogen-producing crust initially requires bioengineering of the surface microenvironment by Microcoleus vaginatus.  相似文献   

9.
Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.  相似文献   

10.
Anabaena species are commonly colonized by bacteria, especially during N2-fixing blooms. Generally these associations do not represent bacterial attack on algal hosts. Instead, the algal N2-fixing capabilities are increased in the presence of the bacteria. Possible mechanisms promoting the mutual growth of algae and attached bacteria were investigated by observing specific sites of bacterial attachment, by noting reduced microzones created by the bacteria, and by locating sites of bacterial uptake of organics representative of algal excretion products.Attached bacteria show preference for typical algal excretion products and their growth is enhanced by such products. In return, enhancement of algal nitrogenase activity occurs when bacteria create O2-consuming microzones around the nitrogenase-bearing heterocysts.  相似文献   

11.
Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N) speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N2 fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA), possibly driving toxic Microcystis blooms throughout the growing season. On weekly time scales in 2010 and 2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS) region to determine population dynamics. In parallel, we measured microcystin concentrations, N2 fixation rates, and potential environmental drivers that contribute to structuring the community. In both years, cyanobacterial community change was strongly correlated with dissolved inorganic nitrogen (DIN) concentrations, and Aphanizomenon and Microcystis alternated dominance throughout the pre-toxic, toxic, and post-toxic phases of the lake. Microcystin concentrations increased a few days after the first significant N2 fixation rates were observed. Then, following large early summer N2 fixation events, Microcystis increased and became most abundant. Maximum microcystin concentrations coincided with Microcystis dominance. In both years, DIN concentrations dropped again in late summer, and N2 fixation rates and Aphanizomenon abundance increased before the lake mixed in the fall. Estimated N inputs from N2 fixation were large enough to supplement, or even support, the toxic Microcystis blooms.  相似文献   

12.
The fate of diazotrophic nitrogen (ND) fixed by planktonic cyanobacteria in pelagic food webs remains unresolved, particularly for toxic cyanophytes that are selectively avoided by most herbivorous zooplankton. Current theory suggests that ND fixed during cyanobacterial blooms can enter planktonic food webs contemporaneously with peak bloom biomass via direct grazing of zooplankton on cyanobacteria or via the uptake of bioavailable ND (exuded from viable cyanobacterial cells) by palatable phytoplankton or microbial consortia. Alternatively, ND can enter planktonic food webs post-bloom following the remineralization of bloom detritus. Although the relative contribution of these processes to planktonic nutrient cycles is unknown, we hypothesized that assimilation of bioavailable ND (e.g., nitrate, ammonium) by palatable phytoplankton and subsequent grazing by zooplankton (either during or after the cyanobacterial bloom) would be the primary pathway by which ND was incorporated into the planktonic food web. Instead, in situ stable isotope measurements and grazing experiments clearly documented that the assimilation of ND by zooplankton outpaced assimilation by palatable phytoplankton during a bloom of toxic Nodularia spumigena Mertens. We identified two distinct temporal phases in the trophic transfer of ND from N. spumigena to the plankton community. The first phase was a highly dynamic transfer of ND to zooplankton with rates that covaried with bloom biomass while bypassing other phytoplankton taxa; a trophic transfer that we infer was routed through bloom-associated bacteria. The second phase was a slowly accelerating assimilation of the dissolved-ND pool by phytoplankton that was decoupled from contemporaneous variability in N. spumigena concentrations. These findings provide empirical evidence that ND can be assimilated and transferred rapidly throughout natural plankton communities and yield insights into the specific processes underlying the propagation of ND through pelagic food webs.  相似文献   

13.
14.
In order to estimate the potential utilization of N2-fixing (heterocystous) cyanobacteria as natural biofertilizers in the Valencian rice fields (Spain), the distribution and seasonal variation of these microorganisms in water and sediment samples were evaluated, and the relationships among cyanobacterial abundance and physical and chemical characteristics of soil and water were investigated. N2-fixing cyanobacteria were present in all the samples analyzed (25 sampling points sampled three times per year during two years). The relative cyanobacterial abundance in soil and water followed contrasting patterns, maximum presence in soil coincided with minimum abundance in water. Correlation analysis showed that cyanobacterial abundance in the two phases (water and sediment) was influenced more by water than by soil properties. Salinity, mineralization variables, and soluble reactive phosphate (SRP) correlated positively with heterocystous cyanobacteria presence. Furthermore, dissolved inorganic nitrogen (DIN) and the ratio DIN: SRP correlated negatively with cyanobacterial abundance. However DIN: SRP ratio better described the cyanobacterial distribution, with a threshold effect: below the Redfield ratio value (7.2 in mass units) cyanobacterial abundance was clearly higher. Correspondence to: A. Quesada.  相似文献   

15.
Marine nitrogen‐fixing cyanobacteria play a central role in the open‐ocean microbial community by providing fixed nitrogen (N) to the ocean from atmospheric dinitrogen (N2) gas. Once thought to be dominated by one genus of cyanobacteria, Trichodesmium, it is now clear that marine N2‐fixing cyanobacteria in the open ocean are more diverse, include several previously unknown symbionts, and are geographically more widespread than expected. The next challenge is to understand the ecological implications of this genetic and phenotypic diversity for global oceanic N cycling. One intriguing aspect of the cyanobacterial N2 fixers ecology is the range of cellular interactions they engage in, either with cells of their own species or with photosynthetic protists. From organelle‐like integration with the host cell to a free‐living existence, N2‐fixing cyanobacteria represent the range of types of interactions that occur among microbes in the open ocean. Here, we review what is known about the cellular interactions carried out by marine N2‐fixing cyanobacteria and where future work can help. Discoveries related to the functional roles of these specialized cells in food webs and the microbial community will improve how we interpret their distribution and abundance patterns and contributions to global N and carbon (C) cycles.  相似文献   

16.
湖泊蓝藻水华发生机理研究进展   总被引:37,自引:6,他引:37  
马健荣  邓建明  秦伯强  龙胜兴 《生态学报》2013,33(10):3020-3030
蓝藻水华是富营养化湖泊常见的生态灾害,通过产生毒素、死亡分解时使水体缺氧和破坏正常的食物网威胁到饮用水安全、公众健康和景观,会造成严重的经济损失和社会问题,揭示其发生机理是进行防治的基础。综述了蓝藻水华发生机理的主要假说和证据,主要分为环境因子(营养盐、氮磷比、温度、微量元素、浮游动物牧食、水文和气象条件等)和生理生态特性(伪空泡、胶质鞘、CO2浓缩机制、适应低光强、贮藏营养物质、防晒、产毒素和固氮等)两个方面;评述了主要新理论,展望了今后的研究。到目前为止的研究表明寻找一两个关键因子并不能阐明蓝藻水华的发生机理。现存的理论或假说尽管已经在蓝藻水华的防治实践中产生重要作用,但仍然未能清楚地阐释其发生的客观规律。认为蓝藻水华是在各种环境因子(外因)的耦合驱动下,水华蓝藻由于其独特的生理生态特性(内因),产生巨大的生物量而在浮游植物群落中占绝对优势,在合适的水文气象条件下集聚于水表而形成。因此水华机理的研究应同时关注水华蓝藻的生理生态学规律和蓝藻水华发生的各种环境条件。不同环境因子协同影响水华蓝藻的不同生理生态特性的表达,从而影响水华的发生过程,将可能是以后研究的重点。蓝藻水华机理的研究在微观方面正趋向于应用分子生物学手段分析蓝藻生理过程,宏观方面则将广泛应用遥感遥测技术观测全湖蓝藻的变化规律。今后加强对水华蓝藻生理生态特性的基因表达与调控和环境多因子耦合作用于蓝藻水华过程的研究将有重要意义。蓝藻水华的机理研究包括现象、过程和原因3个层次的问题,通过大量的现象和过程的研究,不断揭示其发生过程中水华蓝藻的群落演替、种群发展、细胞活性和分子机理等变化规律,才能找到其发生的真正原因,为其防治提供理论依据和更好的治理措施。在蓝藻水华防治方面,控制营养盐和生态修复可能将是今后很长时间内最根本最有效和最具操作性的方法。  相似文献   

17.
The phylogenetic diversity of the microbial community assemblage of the carpet-like mucilaginous cyanobacterial blooms in the eutrophic Lake Taihu was investigated. 16S ribosomal DNA clone libraries produced from the DNA of cyanobacterial assemblages that had been washed to remove unattached bacteria contained only cyanobacteria. However, a further treatment which included grinding the freeze-dried material to physically detach cells followed by the removal of larger cells by filtration allowed us to detect a large variety of bacteria within the cyanobacterial bloom community. Interestingly, the dominant members of the microbial community were Planctomycetes followed by CytophagaFlavobacteriumBacteroides (CFB), Betaproteobacteria, and Gammaproteobacteria. The analysis of the 16S ribosomal DNA clone libraries made from enrichment culture revealed much higher phylogenetic diversity of bacteria. Dominant bacterial groups in the enrichment system were identified as members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria subdivisions, CFB group, and Planctomycetes. In addition, the clone libraries constructed from Planctomycetes-specific 16S ribosomal RNA primers also verified that the enrichment allowed a diversity of Planctomycetes to proliferate, although the community composition was altered after enrichment.  相似文献   

18.
Changes in the complexity of planktonic food webs may be expected in future aquatic systems due to increases in sea surface temperature and an enhanced stratification of the water column. Under these conditions, the growth of unpalatable, filamentous, N2‐fixing cyanobacterial blooms, and their effect on planktonic food webs will become increasingly important. The planktonic food web structure in aquatic ecosystems at times of filamentous cyanobacterial blooms is currently unresolved, with discordant lines of evidence suggesting that herbivores dominate the mesozooplankton or that mesozooplankton organisms are mainly carnivorous. Here, we use a set of proxies derived from amino acid nitrogen stable isotopes from two mesozooplankton size fractions to identify changes in the nitrogen source and the planktonic food web structure across different microplankton communities. A transition from herbivory to carnivory in mesozooplankton between more eutrophic, near‐coastal sites and more oligotrophic, offshore sites was accompanied by an increasing diversity of microplankton communities with aging filamentous cyanobacterial blooms. Our analyses of 124 biotic and abiotic variables using multivariate statistics confirmed salinity as a major driver for the biomass distribution of non‐N2‐fixing microplankton species such as dinoflagellates. However, we provide strong evidence that stratification, N2 fixation, and the stage of the cyanobacterial blooms regulated much of the microplankton diversity and the mean trophic position and size of the metabolic nitrogen pool in mesozooplankton. Our empirical, macroscale data set consistently unifies contrasting results of the dominant feeding mode in mesozooplankton during blooms of unpalatable, filamentous, N2‐fixing cyanobacteria by identifying the at times important role of heterotrophic microbial food webs. Thus, carnivory, rather than herbivory, dominates in mesozooplankton during aging and decaying cyanobacterial blooms with hitherto uncharacterized consequences for the biogeochemical functions of mesozooplankton.  相似文献   

19.
Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles.  相似文献   

20.
Cyanobacterial harmful algal blooms are prevalent around the world, influencing aquatic organisms and altering the physico-chemical properties in freshwater systems. However, the response of bacterial communities to toxic cyanobacterial blooms and associated microcystins (MC) remain poorly understood even though global concentrations of MC have increased dramatically in the past few decades. To address this issue, the dynamics of bacterial community composition (BCC) in the water column and how BCC is influenced by both harmful cyanobacterial blooms and environmental factors were investigated on a monthly basis from August 2013 to July 2014 in Lake Taihu, China. Non-metric multidimensional scaling (NMDS) revealed that seasonal variation in BCC was significant, and that the succession of BCC greatly depends on changes in environmental conditions. Redundancy analysis (RDA) results showed that the overall variation of BCC was explained mainly by dissolved oxygen (DO), nitrate nitrogen (NO3-N), and Microcystis. The alpha biodiversity of the bacterial community was different among months with the highest diversity in February and the lowest diversity in October. Furthermore, significant negative relationships were found between alpha biodiversity indices and Microcystis abundance as well as with intracellular MC concentrations, indicating that Microcystis and associated MC may influence the bacterial community structure by reducing its biodiversity. This study shows that potential associations exist between toxic cyanobacterial blooms and bacterial communities but more investigations are needed to obtain a mechanistic understanding of their complex relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号