首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyandry, i.e. mating with multiple males within one reproductive event, is a common female mating strategy but its adaptive function is often unclear. We tested whether polyandrous females gain genetic benefits by comparing fitness traits of monandrous (mated twice with a single male) and polyandrous (mated twice with two different males) female bank voles Clethrionomys glareolus. We raised the offspring in the laboratory until adulthood and measured their body size, before releasing them to outdoor enclosures to overwinter. At the onset of the breeding season in the following spring, we found that offspring of polyandrous females performed significantly better at reproduction than those of monandrous females. This was mainly due to sons of polyandrous females producing significantly more offspring than those of monandrous females. No significant differences were found for offspring body mass or winter survival between the two treatments. Our results appear to provide evidence that bank vole females gain long-term benefits from polyandry.  相似文献   

2.
The maintenance of female polyandry has traditionally been attributed to the material (direct) benefits derived from male mating resources (e.g. nuptial gifts) accrued by multiple mating. However, genetic (indirect) benefits offer a more robust explanation since only polyandrous, not monandrous, females may gain both material benefits from multiple mating and genetic benefits from multiple sires. Discriminating between material and genetic benefits is essential when addressing the mechanism by which polyandry is adaptively maintained, but are difficult to disentangle because they affect fitness in similar ways. To test the hypothesis that genetic benefits maintain polyandry, we compared four components of fitness (longevity, fecundity, hatching success and survivorship) between monandrous and polyandrous females in the ground cricket, Allonemobius socius. We discovered that females derived nongenetic benefits from mating multiply, in that the magnitude of the nuptial gift was positively associated with the number of eggs produced. However, polyandrous females had over a two-fold greater hatching success and a 43% greater offspring survivorship, leading to a significantly higher relative fitness than the monandrous strategy. These results were independent of the confounding effects of material benefits, implying that genetic contributions play a large role in the maintenance of polyandry and potentially in the antagonistic coevolutionary relationship between polyandry and male nuptial gifts. Copyright 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour  相似文献   

3.
White J  Richard M  Massot M  Meylan S 《PloS one》2011,6(7):e22339
Sexually transmitted diseases have often been suggested as a potential cost of multiple mating and as playing a major role in the evolution of mating systems. Yet there is little empirical data relating mating strategies to sexually transmitted microorganisms in wild populations. We investigated whether mating behaviour influences the diversity and composition of cloacal assemblages by comparing bacterial communities in the cloaca of monandrous and polyandrous female common lizards Zootoca vivipara sampled after the mating period. We found that polyandrous females harboured more diverse communities and differed more in community composition than did monandrous females. Furthermore, cloacal diversity and variability were found to decrease with age in polyandrous females. Our results suggest that the higher bacterial diversity found in polyandrous females is due to the sexual transmission of bacteria by multiple mates. The impact of mating behaviour on the cloacal microbiota may have fitness consequences for females and may comprise a selective pressure shaping the evolution of mating systems.  相似文献   

4.
Bet‐hedging via polyandry (spreading the extinction risk of the female''s lineage over multiple males) may explain the evolution of female multiple mating, which is found in a wide range of animal and plant taxa. This hypothesis posits that females can increase their fitness via polyandrous mating when “unsuitable” males (i.e., males causing reproductive failure for various reasons) are frequent in the population and females cannot discriminate such unsuitable mates. Although recent theoretical studies have shown that polyandry can operate as a bet‐hedging strategy, empirical tests are scarce. In the present study, we tested the bet‐hedging polyandry hypothesis by using the red flour beetle Tribolium castaneum. We compared female reproductive success between monandry and polyandry treatments when females mated with males randomly collected from an experimental population, including 20% irradiated (infertile) males. In addition, we evaluated geometric mean fitness across multiple generations as the index of adaptability of bet‐hedging traits. Polyandrous females showed a significantly higher egg hatching rate and higher geometric mean fitness than monandrous females. These results strongly support the bet‐hedging polyandry hypothesis.  相似文献   

5.
Maintenance of health and the production of offspring are competing processes that can result in trade-offs. As vertebrates invest substantial resources in their immune system, it is crucial to understand the interactions between immunity and reproductive strategies. In the lizard Zootoca vivipara, females have condition- and context-dependent mating strategies. We predicted that, if the risk of infection is higher for polyandrous females, then polyandrous females should invest more in immune system while monandrous females should invest more in reproduction. In order to test our prediction, we captured 62 gravid females of known age in a natural population; we kept them until parturition to access to their offspring. Then, using microsatellite marker-based paternity analyses within litters, we determine the mating strategy of females (monandrous or polyandrous). Females were also challenged with PHA to estimate their inflammatory response. Our results show that polyandrous females have a higher PHA response than the monandrous females, and that monandrous females produce more males and more juveniles of better body condition than polyandrous females. The relationship between mating behaviour and immune function may have consequences for females and may shape the evolution of mating systems.  相似文献   

6.
Mating system variation is profound in animals. In insects, female willingness to remate varies from mating with hundreds of males (extreme polyandry) to never remating (monandry). This variation in female behaviour is predicted to affect the pattern of selection on males, with intense pre-copulatory sexual selection under monandry compared to a mix of pre- and post-copulatory forces affecting fitness under polyandry. We tested the hypothesis that differences in female mating biology would be reflected in different costs of pre-copulatory competition between males. We observed that exposure to rival males early in life was highly costly for males of a monandrous species, but had lower costs in the polyandrous species. Males from the monandrous species housed with competitors showed reduced ability to obtain a mate and decreased longevity. These effects were specific to exposure to rivals compared with other types of social interactions (heterospecific male and mated female) and were either absent or weaker in males of the polyandrous species. We conclude that males in monandrous species suffer severe physiological costs from interactions with rivals and note the significance of male–male interactions as a source of stress in laboratory culture.  相似文献   

7.
Polyandry-induced sperm competition is assumed to impose costson males through reduced per capita paternity success. In contrast,studies focusing on the consequences of polyandry for femalesreport increased oviposition rates and fertility. For thesespecies, there is potential for the increased female fecundityassociated with polyandry to offset the costs to males of sharedpaternity. We tested this hypothesis by comparing the proportionand number of offspring sired by males mated with monandrousand polyandrous females in the hide beetle, Dermestes maculates,both for males mating with different females and for males rematingwith the same female. In 4 mating treatments, monandrous femalesmated either once or twice with the same male and polyandrousfemales mated either twice with 2 different males or thricewith 2 males (where 1 male mated twice). Polyandrous and twice-matingmonandrous females displayed greater fecundity and fertilitythan singly mating monandrous females. Moreover, males rematedto the same female had greater paternity regardless of whetherthat female mated with another male. In both polyandrous treatments,male mating order did not affect paternity success. Finally,although the proportion of eggs sired decreased if a male matedwith a polyandrous female, multiply mating females or femalesthat remated with a previous mate laid significantly more eggsand thus the actual number of eggs sired was comparable. Thus,males do not necessarily accrue a net fitness loss when matingwith polyandrous females. This may explain the absence of anyobvious defensive paternity-protection traits in hide beetlesand other species.  相似文献   

8.
Genetic benefits are potentially the most robust explanation of the controversial issue of evolutionary maintenance of polyandry, but the unambiguous demonstration of such benefits has been hindered by the possibility of their confusion with maternal effects. Previous research has shown that polyandrous bulb mite females produce daughters with higher fecundity than monandrous females. Here, we investigate whether this effect arises because polyandrous females invest more in their offspring, or because their offspring inherit 'good genes' from their fathers. Females were mated with either one or four (different) males. However, by sterilizing three of the four males with ionizing radiation, we eliminated any chance of sexual selection (in the polyandrous treatment) so that any differences in the female mating regimes must have been owing to maternal effects. Polyandry had no significant effect on daughter fecundity, thus indicating that any previously documented effects must have been genetic. This was further supported by a significant association between fathers' offensive sperm-competitive ability and the fecundity of their daughters. The association with fathers' sperm defensive ability was not significant, and neither was the association between fathers' sperm competitiveness and sons' reproductive success. However, sons of polyandrous females had lower reproductive success than sons of monandrous females. This shows that the maternal effects of polyandry should be taken into account whenever its costs and benefits are being considered.  相似文献   

9.
Whether sexual selection increases or decreases female fitness is determined by the occurrence and relative importance of sexual-conflict processes and the ability of females to choose high-quality males. Experimentally enforced polyandry and monogamy have previously been shown to cause rapid evolution in the yellow dung fly Scathophaga stercoraria. Flies from polyandrous lines invested more in reproductive tissue, and this investment influenced paternity in sperm competition, but came at a cost to immune function. While some fitness consequences of enforced polyandry or monogamy have been examined when flies mate multiply, the consequences for female fitness when singly copulated remain unexplored. Under a good-genes scenario females from polyandrous lines should be of higher general quality and should outperform females from monogamous lines even with a single copulation. Under sexual conflict, costly adaptations will afford no advantages when females are allowed to mate only once. We investigate the lifetime reproductive success and longevity of females evolving under enforced monogamy or polyandry when mating once with males from these selection regimes. Females from polyandrous lines were found to have lower fitness than their monogamous counterparts when mating once. They died earlier and produced significantly fewer eggs and offspring. These results suggest that sexual conflict probably drove evolution under enforced polyandry as female fitness did not increase overall as expected with purely good-genes effects.  相似文献   

10.
Female multiple mating (polyandry) is widespread across Insecta, even if mating can be costly to females. To explain the evolution and maintenance of polyandry, several hypotheses, mainly focusing on the material (direct) and/or the genetic (indirect) benefits, have been proposed and empirically tested in many species. Considering only the direct benefits, repeatedly‐mated females are expected to exhibit the same fitness as multiply‐mated females under the same mating frequency. In the present study, we compare the fitness of females received monandrous repeated mating (MM) and polyandrous multiple mating (PM) in a polyandrous leaf beetle Galerucella birmanica and assess female mate preference with regard to polyandry or monandry. Our data indicate that the longevity and the egg‐laying duration of MM females are significantly longer than that of PM females. MM females produce significantly more hatched eggs than PM females over their lifetime under the same mating frequency, which results from the high hatching rate of eggs produced by MM females. PM females mated with novel virgin males in the second mating suffer decreased longevity and lifetime fecundity compared with PM females mated with novel mated males in the second mating. Once‐mated females are more likely to re‐mate with familiar males than novel males. By contrast to expectations, the results of the present study suggest that repeated mating provides females with more direct benefits than multiple mating in G. birmanica, and females prefer to re‐mate with familiar males. The possible causes of this finding are discussed.  相似文献   

11.
In many animal systems, females exhibit a localized immune response to insemination that helps defend against sexually transmitted disease. However, this response may also kill sperm, reducing a male's reproductive potential. If males could suppress this response, they may be able to increase their sperm's representation in the female's reproductive tract, thereby increasing their fitness. Here we address the hypothesis that, under conditions of sperm competition, males interfere with female immunity. To test our hypothesis, we manipulated levels of female mating frequency (single vs. multiply mated) and seminal diversity (monandrous vs. polyandrous) in the cricket, Allonemobius socius and measured female immune response. As mating frequency increased, female hemocyte load decreased, indicating a general reproductive cost. As seminal diversity increased, phenoloxidase (PO) activity (in vitro measure of 'potential' macroparasitic defense) increased and encapsulation ability (in vivo measure of 'realized' macroparasitic defense) decreased in polyandrous females. These results suggest that males may manipulate female immunity by interrupting the pro-PO cascade, which begins with the activation of PO and ends in the encapsulation of invading foreign bodies. In other words, female immune function may serve as a battleground over which a sexual conflict is fought.  相似文献   

12.
Female multiple mating (or polyandry) is considered to act as a genetic bet-hedging mechanism, by which females can reduce the assessment error in regard to mates genetic quality when only uncertain information is available. In spite of frequent verbal arguments, no theoretical examination has been carried out to determine the effectiveness of bet-hedging by multiple mating. In the present paper, I show that three factors, female population size, remating costs and environmental fluctuation, all affect the effectiveness of bet-hedging. A mathematical model predicts that bet-hedging effectively works only in small populations, and computer simulations were used to confirm this prediction. The results of simulations differed according to the degree of environmental fluctuation. In relatively stable environments, if there is no remating cost, the fixation probability of a multiple mating strategy is slightly higher than that of a single mating strategy, independent of female population size. However, with very slight fitness costs, multiple mating drastically loses its advantage as population size increases, and almost always becomes extinct within large populations. This means that the evolution of polyandry solely by the mechanism of bet-hedging is unlikely in stable environments. However, in unpredictable environments, or when negative frequency-dependent selection on fitness-related loci is introduced, a multiple mating strategy is sometimes successful against a single mating strategy, even if it entails a small fitness cost. Therefore, female multiple mating may possibly evolve only in these limited conditions. In most cases, some deterministic mechanisms such as postcopulatory sperm selection by multiply mated females (or direct material benefits) are more reasonable as the evolutionary causes of polyandry.  相似文献   

13.
Given the costs of multiple mating, why has female polyandry evolved? Utetheisa ornatrix moths are well suited for studying multiple mating in females because females are highly polyandrous over their life span, with each male mate transferring a substantial spermatophore with both genetic and nongenetic material. The accumulation of resources might explain the prevalence of polyandry in this species, but another, not mutually exclusive, possibility is that females mate multiply to increase the probability that their sons will inherit more‐competitive sperm. This latter “sexy‐sperm” hypothesis posits that female multiple mating and male sperm competitiveness coevolve via a Fisherian runaway process. We tested the sexy‐sperm hypothesis by using competitive double matings to compare the sperm competition success of sons of polyandrous versus monandrous females. In accordance with sexy‐sperm theory, we found that in 511 offspring across 17 families, the male whose polyandrous mother mated once with each of three different males sired significantly more of all total offspring (81%) than did the male whose monandrous mother was mated thrice to a single male. Interestingly, sons of polyandrous mothers had a significantly biased sex ratio of their brood toward sons, also in support of the hypothesis.  相似文献   

14.
The genetic incompatibility avoidance hypothesis as an explanation for the polyandrous mating strategies (mating with more than one male) of females of many species has received significant attention in recent years. It has received support from both empirical studies and a meta-analysis, which concludes that polyandrous females enjoy increased reproductive success through improved offspring viability relative to monandrous females. In this study we investigate whether polyandrous female Drosophila simulans improve their fitness relative to monandrous females in the face of severe Wolbachia-associated reproductive incompatibilities. We use the results of this study to develop models that test the predictions that Wolbachia should promote polyandry, and that polyandry itself may constrain the spread of Wolbachia. Uniquely, our models allow biologically relevant rates of incompatibility to coevolve with a polyandry modifier allele, which allows us to evaluate the fate of the modifier and that of Wolbachia. Our empirical results reveal that polyandrous females significantly reduce the reproductive costs of Wolbachia, owing to infected males being poor sperm competitors. The models show that this disadvantage in sperm competition can inhibit or prevent the invasion of Wolbachia. However, despite the increased reproductive success obtained by polyandrous females, the spread of a polyandry modifier allele is constrained by any costs that might be associated with polyandry and the low frequency of incompatible matings when Wolbachia has reached a stable equilibrium. Therefore, although incompatibility avoidance may be a benefit of polyandry, our findings do not support the hypothesis that genetic incompatibilities caused by Wolbachia promote the evolution of polyandry.  相似文献   

15.
Classic sex roles depict females as choosy, but polyandry is widespread. Empirical attempts to understand the evolution of polyandry have often focused on its adaptive value to females, whereas 'convenience polyandry' might simply decrease the costs of sexual harassment. We tested whether constraint-free female strategies favour promiscuity over mating selectivity through an original experimental design. We investigated variation in mating behaviour in response to a reversible alteration of sexual dimorphism in body mass in the grey mouse lemur, a small primate where female brief sexual receptivity allows quantifying polyandry. We manipulated body condition in captive females, predicting that convenience polyandry would increase when females are weaker than males, thus less likely to resist their solicitations. Our results rather support the alternative hypothesis of 'adaptive polyandry': females in better condition are more polyandrous. Furthermore, we reveal that multiple mating incurs significant energetic costs, which are strikingly symmetrical between the sexes. Our study shows that mouse lemur females exert tight control over mating and actively seek multiple mates. The benefits of remating are nevertheless not offset by its costs in low-condition females, suggesting that polyandry is a flexible strategy yielding moderate fitness benefits in this small mammal.  相似文献   

16.
Abstract Polyandry reflected in multiple mating with different mates is regarded as favoured by natural selection in males but not necessarily in females, where conflicting effects on fitness components can occur. The present study aims to provide empirical evidence to predict which fitness components may be affected in this sexual conflict using a species that demonstrates potential between‐population variation in their resolution: the cowpea weevil Callosobruchus maculatus. Two strains showing contrasting competition outcomes (scramble × contest) and contrasting life‐history strategies based on trade‐offs between longevity and fecundity are crossed for subsequent selection based on larval‐competition strategy, expecting the production of a correlated response to multiple (polyandrous) mating. Such a response is expected because the scramble strain shows high fecundity (and lower longevity) and would benefit from multiple mating, in contrast with the contest strain, which shows high juvenile mortality. The scramble‐selected lines would evolve a response of increased fecundity and reduced longevity under multiple and potentially polyandrous mating but the contest‐selected lines would not respond to multiple (polyandrous) mating. Instead, both scramble‐ and contest‐selected lines show increased fecundity and reduced longevity with multiple (polyandrous) matings, which did not affect egg weight. Indirect benefits of multiple (polyandrous) mating appear to be relevant for lines showing contest competition among juveniles.  相似文献   

17.
P. Pandey 《Journal of Asia》2010,13(2):151-155
The influence of polyandry on the reproductive performance of females and on offspring fitness in Zygogramma bicolorata Pallister was investigated using four experimental treatments, viz. (A) monandrous, limited mating, (B) monandrous, unlimited mating, (C) polyandrous, no-choice limited mating, and (D) polyandrous, mate choice unlimited mating. Polyandrous females had higher reproductive performance than monandrous ones. Monandrous females subjected to unlimited matings had higher egg viability than those subjected to limited matings, but fecundity did not differ significantly. In polyandrous females, the freedom to choose mates did not affect reproductive performance. However, offspring of polyandrous females allowed mate choice developed fastest and had the highest survival at 25, 27, and 30 °C. Thus, polyandry in Z. bicolorata appears to provide both direct (material) and indirect (genetic) benefits resulting in better reproductive performance and increased adaptability of the offspring to counter environmental stresses. The present study not only adds to the knowledge of reproductive biology of Z. bicolorata but it could also be of economic value as it may help in the mass rearing of Z. bicolorata and in the management of Parthenium hysterophorus.  相似文献   

18.
Females of most insect species maximize their fitness by mating more than once. Yet, some taxa are monandrous and there are two distinct scenarios for the maintenance of monandry. While males should always benefit from inducing permanent non‐receptivity to further mating in their mate, this is not necessarily true for females. Since females benefit from remating in many species, cases of monandry may reflect successful male manipulation of female remating (i.e. sexual conflict). Alternatively, monandry may favor both mates, if females maximize their fitness by mating only once in their life. These two hypotheses for the maintenance of monandry make contrasting predictions with regards to the effects of remating on female fitness. Here, we present an experimental test of the above hypotheses, using the monandrous housefly (Musca domestica) as a model system. Our results showed that accessory seminal fluid substances that males transfer to females during copulation have a dual effect: they trigger female non‐receptivity but also seem to have a nutritional effect that could potentially enhance female fitness. These results suggest that monandry is maintained in house flies despite potential benefits that females would gain by mating multiply.  相似文献   

19.
Whether species exhibit significant heritable variation in fitness is central for sexual selection. According to good genes models there must be genetic variation in males leading to variation in offspring fitness if females are to obtain genetic benefits from exercising mate preferences, or by mating multiply. However, sexual selection based on genetic benefits is controversial, and there is limited unambiguous support for the notion that choosy or polyandrous females can increase the chances of producing offspring with high viability. Here we examine the levels of additive genetic variance in two fitness components in the dung beetle Onthophagus taurus. We found significant sire effects on egg-to-adult viability and on son, but not daughter, survival to sexual maturity, as well as moderate coefficients of additive variance in these traits. Moreover, we do not find evidence for sexual antagonism influencing genetic variation for fitness. Our results are consistent with good genes sexual selection, and suggest that both pre- and postcopulatory mate choice, and male competition could provide indirect benefits to females.  相似文献   

20.
It is widely accepted that male age can influence female mating preference and subsequent fitness consequences in many polyandrous species, yet this is seldom investigated in monandrous species. In the present study, we use the monandrous pine moth Dendrolimus punctatus to examine the effects of male age on female mating preference and future reproductive potential. In multiple male trials, when permitted free mating from an aggregation consisting of virgin males aged 0 (young), 2 (middle-aged) and 4 (old) days, virgin females preferentially mate with young and middle-aged males, although mating latency and mating duration are independent of male age. In single male trials, when virgin females are randomly assigned single virgin males of known age, a negative correlation is found between mating success and male age in this species. However, we find that male age also has no effect on mating latency and mating duration. Further fitness analysis reveals that females do not receive benefits in terms of oviposition period, total egg production, average daily egg production, percentage of egg hatching, longevity, expected reproduction and relative expected reproduction from mating with young and middle-aged males compared with mating with old males. The results of the present study are the first demonstrate that females mated preferentially with younger males but gain no apparent fitness benefits in a monandrous moth species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号