首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Bite-like skin lesions on harbour porpoises (Phocoena phocoena) have been suspected to be caused by grey seals (Halichoerus grypus), and a few field observations have been reported. Bite-like skin lesions observed on stranded animals were characterized by two main components: large flaps of loose or missing skin and blubber with frayed edges and puncture lesions. Definitive demonstration of predation by a grey seal was not reported so far in those stranded animals. In this study, five stranded porpoises with bite-like skin lesions were swabbed for genetic investigations. In addition, the head of a recently dead grey seal was used to mimic bite-like skin injuries on a porpoise carcass. Subsequently, the artificial skin injuries were swabbed, along with the gum of the seal used for inflicting them (positive controls). Total DNA was extracted from the swabs and was used to retrieve a fragment of mitochondrial DNA by PCR. Primers were designed to amplify a specific stretch of mitochondrial DNA known to differ between grey seals and porpoises. The amplicon targeted was successfully amplified from the positive control and from two of the stranded porpoises, and grey seal-specific mitochondrial DNA was retrieved from all those samples. We conclude that (1) it is possible to detect grey seal DNA from dead porpoises even after several days in seawater and (2) bite-like skin lesions found on dead porpoises definitively result from grey seals attacks. The attacks are most likely linked with predation although, in a number of cases, scavenging and aggressive behaviour cannot be excluded.  相似文献   

2.
Harbour porpoises (Phocoena phocoena) and harbour seals (Phoca vitulina) from German waters are infected by six species of lungworms (Metastrongyloidea). These nematodes parasitise the respiratory tract, are pathogenic and often cause secondary bacterial infections. In spite of their clinical and epidemiological significance, the life cycle and biology of lungworms in the marine environment is still largely unknown. Regions of ribosomal DNA (ITS-2) of all lungworms parasitising harbour porpoises and harbour seals in German waters were sequenced to characterise and compare the different species. The phylogenetic relationship among the lungworm species was analysed by means of their ITS-2 nucleotide sequences and the species-specific traits of the ITS-2 were used to screen wild fish as possible intermediate hosts for larval lungworms. Molecular markers were developed to identify larval nematodes via in-situ hybridisation of tissues of harbour porpoise and harbour seal prey fish. Potential wild intermediate fish hosts from the North Sea were dissected and found to harbour larval nematodes. Histological examination and in-situ hybridisation of tissue samples from these fish showed lungworm larvae within the intestinal wall. Based on larval ITS-2 nucleotide sequences, larval nematodes were identified as Pseudalius inflexus and Parafilaroides gymnurus. Turbot (Psetta maxima) bred and raised in captivity were experimentally infected with live L1s of Otostrongylus circumlitus and ensheathed larvae were recovered from the gastrointestinal tract of turbot and identified using molecular tools. Our results show that fish intermediate hosts play a role in the transmission of metastrongyloid nematodes of harbour porpoises and harbour seals.  相似文献   

3.
Sympatric harbour (Phoca vitulina) and grey seals (Halichoerus grypus) are increasingly considered potential competitors, especially since recent local declines in harbour seal numbers while grey seal numbers remained stable or increased at their European core distributions. A better understanding of the interactions between these species is critical for conservation efforts. This study aimed to identify the trophic niche overlap between harbour and grey seals at the southern limit of their European range, in the Baie de Somme (BDS, Eastern English Channel, France), where numbers of resident harbour seals and visiting grey seals are increasing exponentially. Dietary overlap was identified from scat contents using hierarchical clustering. Isotopic niche overlap was quantified using δ13C and δ15N isotopic values from whiskers of 18 individuals, by estimating isotopic standard ellipses with a novel hierarchical model developed in a Bayesian framework to consider both intraindividual variability and interindividual variability. Foraging areas of these individuals were identified from telemetry data. The three independent approaches provided converging results, revealing a high trophic niche overlap due to consumption of benthic flatfish. Two diet clusters were dominated by either small or large benthic flatfish; these comprised 85.5% [CI95%: 80.3%–90.2%] of harbour seal scats and 46.8% [35.1%–58.4%] of grey seal scats. The narrower isotopic niche of harbour seals was nested within that of grey seals (58.2% [22.7%–100%] overlap). Grey seals with isotopic values similar to harbour seals foraged in coastal waters close to the BDS alike harbour seals did, suggesting the niche overlap may be due to individual grey seal strategies. Our findings therefore provide the basis for potential competition between both species (foraging on benthic flatfish close to the BDS). We suggest that a continued increase in seal numbers and/or a decrease in flatfish supply in this area could cause/amplify competitive interactions and have deleterious effects on harbour seal colonies.  相似文献   

4.
Knowledge about parasitism in harbour porpoises and their health status around Greenland is scarce. This study provides knowledge about the poorly studied cetacean in its rapidly changing environment. Parasites and pathological findings in 20 harbour porpoises (Phocoena phocoena) hunted in waters around West Greenland are presented. Carcasses were dissected, and parasitological, histological and bacteriological investigations were carried out. Protozoa (Sarcocystis sp.), Nematoda (Halocercus invaginatus, Stenurus minor, Anisakis simplex sensu lato (s.l.), Crassicauda sp.), Trematoda (Campula oblonga) and Cestoda (Phyllobothrium delphini, Monorygma grimaldii) were found. Parasitic infection of the peribullar cavity and lung with pseudaliid nematodes was found in most animals. Sixty per cent of the porpoises were infected with stomach worms, and trematodes were present in liver and pancreas of 90 and 30 % of the porpoises, respectively. Crassicauda sp. was isolated from perimuscular fascia in 45 % of the animals. This is the first record of tetraphyllidean merocercoids in harbour porpoises. M. grimaldii and P. delphini were found in blubber layer of 15 % and abdominal cavity of 50 % of the porpoises. Bronchopneumonia, gastritis, cholangitis, pancreatitis and panniculitis were almost exclusively associated with parasitic infection and usually mild. Compared with a previous study of Greenlandic porpoises from 1995, a significant increase in severity of parasitic infections and the emergence of new parasite species were observed, most likely associated with changes in diet, influenced by increasing sea temperatures and receding ice cover.  相似文献   

5.
Harbour seals (Phoca vitulina) and grey seals (Halichoerus grypus) both occur within the UK, but display regional contrasting population trends. While grey seals are typically increasing in number, harbour seals have shown varying trends in recent decades following repeated pandemics. There is a need for monitoring of regional and local populations to understand overall trends. This study utilized a 20‐year dataset of seal counts from two neighboring harbours in the Solent region of south England. Generalized additive models showed a significant increase in the numbers of harbour (mean 5.3–30.5) and grey (mean 0–12.0) seals utilizing Chichester Harbour. Conversely, in Langstone Harbour there has been a slight decrease in the number of harbour seals (mean 5.3–4.0). Accompanying photographic data from 2016 to 18 supports the increase in seal numbers within Chichester Harbour, with a total of 68 harbour and 8 grey seals identified. These data also show evidence of site fidelity of harbour seals in this area, with almost a quarter of animals resighted within the past three years. Overall, this long‐term study indicates an increasing number of both harbour and grey seals within the Solent. However, more research is required to identify the drivers of this trend.  相似文献   

6.

Background

Since the recommendations on group housing of mink (Neovison vison) were adopted by the Council of Europe in 1999, it has become common in mink production in Europe. Group housing is advantageous from a production perspective, but can lead to aggression between animals and thus raises a welfare issue. Bite marks on the animals are an indicator of this aggressive behaviour and thus selection against frequency of bite marks should reduce aggression and improve animal welfare. Bite marks on one individual reflect the aggression of its group members, which means that the number of bite marks carried by one individual depends on the behaviour of other individuals and that it may have a genetic basis. Thus, for a successful breeding strategy it could be crucial to consider both direct (DGE) and indirect (IGE) genetic effects on this trait. However, to date no study has investigated the genetic basis of bite marks in mink.

Result and discussion

A model that included DGE and IGE fitted the data significantly better than a model with DGE only, and IGE contributed a substantial proportion of the heritable variation available for response to selection. In the model with IGE, the total heritable variation expressed as the proportion of phenotypic variance (T2) was six times greater than classical heritability (h2). For instance, for total bite marks, T2 was equal to 0.61, while h2 was equal to 0.10. The genetic correlation between direct and indirect effects ranged from 0.55 for neck bite marks to 0.99 for tail bite marks. This positive correlation suggests that mink have a tendency to fight in a reciprocal way (giving and receiving bites) and thus, a genotype that confers a tendency to bite other individuals can also cause its bearer to receive more bites.

Conclusion

Both direct and indirect genetic effects contribute to variation in number of bite marks in group-housed mink. Thus, a genetic selection design that includes both direct genetic and indirect genetic effects could reduce the frequency of bite marks and probably aggression behaviour in group-housed mink.  相似文献   

7.
A decade of visual and acoustic detections of marine megafauna around offshore Oil & Gas (O&G) installations in the North and Irish Seas are presented. Marine megafauna activity was monitored visually and acoustically by Joint Nature Conservation Committee (JNCC) qualified and experienced Marine Mammal Observers (MMO) and Passive Acoustic Monitoring (PAM) Operators respectively, with real-time towed PAM in combination with industry standard software, PAMGuard. Monitoring was performed during routine O&G industrial operations for underwater noise mitigation purposes, and to ensure adherence to regulatory guidelines. Incidental sightings by off-effort MMOs and installation crew were also reported. Visual and acoustic monitoring spanned 55 non-consecutive days between 2004 and 2014. A total of 47 marine mammal sightings were recorded by MMOs on dedicated watch, and 10 incidental sightings of marine megafauna were reported over 10 years. Species included: harbour porpoise (Phocoena phocoena), Atlantic white-sided dolphin (Lagenorhynchus acutus), white beaked dolphin (Lagenorhynchus albirostris), common dolphin (Delphinus delphis), minke whale (Balaenoptera acutorostrata), common seal (Phoca vitulina), grey seal (Halichoerus grypus) and, basking shark (Cetorhinus maximus). Passive Acoustic Monitoring was conducted on two occasions in 2014; 160 PAM hours over 12 days recorded a total of 308 individual clicks identified as harbour porpoises. These appear to be the first such acoustic detections obtained from a North Sea drilling rig whilst using a typically configured hydrophone array designed for towing in combination with real-time PAMGuard software. This study provides evidence that marine megafauna are present around mobile and stationary offshore O&G installations during routine operational activities. On this basis, Environmental Impact Assessments (EIAs) for decommissioning O&G platforms should be carried-out on a case-by-case basis, and must include provisions for hitherto overlooked marine megafauna.  相似文献   

8.
We present new and revised data for the phocine distemper virus (PDV) epidemics that resulted in the deaths of more than 23 000 harbour seals Phoca vitulina in 1988 and 30,000 in 2002. On both occasions the epidemics started at the Danish island of Anholt in central Kattegat, and subsequently spread to adjacent colonies in a stepwise fashion. However, this pattern was not maintained throughout the epidemics and new centres of infection appeared far from infected populations on some occasions: in 1988 early positive cases were observed in the Irish Sea, and in 2002 the epidemic appeared in the Dutch Wadden Sea, 6 wk after the initiation of the outbreak at Anholt Island. Since the harbour seal is a rather sedentary species, such 'jumps' in the spread among colonies suggest that another vector species could have been involved. We discussed the role of sympatric species as disease vectors, and suggested that grey seal populations could act as reservoirs for PDV if infection rates in sympatric species are lower than in harbour seals. Alternatively, grey seals could act as subclinical infected carriers of the virus between Arctic and North Sea seal populations. Mixed colonies of grey and harbour seal colonies are found at all locations where the jumps occurred. It seems likely that grey seals, which show long-distance movements, contributed to the spread among regions. The harbour seal populations along the Norwegian coast and in the Baltic escaped both epidemics, which could be due either to genetic differences among harbour seal populations or to immunity. Catastrophic events such as repeated epidemics should be accounted for in future models and management strategies of wildlife populations.  相似文献   

9.
In Greenlandic waters the harbour porpoise (Phocoena phocoena) has been observed around the southern part of Greenland from Ammassalik on the east coast to Avanersuaq in northwest Greenland. The main distribution lies between Sisimiut and Paamiut in central west Greenland. Catch statistics from 1900 to 1993 indicate an annual average take of 668 harbour porpoises, ranging from 27 to 1531 animals. A decline in the reported catch has been recorded since 1980. Harbour porpoises are mainly caught between April and November, with a peak during June to October. Five fish species, crustaceans and squids have been found in stomach contents of harbour porpoises in Greenlandic waters. There are no indications that environmental issues such as organochlorines, heavy metals, oil or noise have constituted any threat to harbour porpoises in Greenland. No reports of ice entrapments of harbour porpoises have yet been made in Greenland, as is the case for white whales and narwhals on the west coast of Greenland. Disease patterns of harbour porpoise have not been studied in Greenland and incidents of mass mortality have never been recorded. Killer whales are sparse along the west Greenland coast and are not believed to constitute a threat to the harbour porpoise population. In Greenland no estimates on stock size are available, and a monitoring programme is needed if the impact of the catch is to be evaluated. Received: 10 February 1997 / Accepted: 26 September 1997  相似文献   

10.
  1. Quantifying consumption and prey choice for marine predator species is key to understanding their interaction with prey species, fisheries, and the ecosystem as a whole. However, parameterizing a functional response for large predators can be challenging because of the difficulty in obtaining the required data on predator diet and on the availability of multiple prey species.
  2. This study modeled a multi‐species functional response (MSFR) to describe the relationship between consumption by harbour porpoises (Phocoena phocoena) and the availability of multiple prey species in the southern North Sea. Bayesian methodology was employed to estimate MSFR parameters and to incorporate uncertainties in diet and prey availability estimates. Prey consumption was estimated from stomach content data from stranded harbour porpoises. Prey availability to harbour porpoises was estimated based on the spatial overlap between prey distributions, estimated from fish survey data, and porpoise foraging range in the days prior to stranding predicted from telemetry data.
  3. Results indicated a preference for sandeels in the study area. Prey switching behavior (change in preference dependent on prey abundance) was confirmed by the favored type III functional response model. Variation in the size of the foraging range (estimated area where harbour porpoises could have foraged prior to stranding) did not alter the overall pattern of the results or conclusions.
  4. Integrating datasets on prey consumption from strandings, predator foraging distribution using telemetry, and prey availability from fish surveys into the modeling approach provides a methodological framework that may be appropriate for fitting MSFRs for other predators.
  相似文献   

11.
Reports on the predators of ammonoids are rare, although ammonoids were abundant and diverse invertebrates in many Paleozoic and Mesozoic marine ecosystems. Most previous work on lethal ammonoid predation has focused on (sub)circular tooth marks which resulted from fish and mosasaur attacks. In the present study we discuss a relatively common type of bite mark in ammonoid shells, the ‘ventral bite mark’. This typically occurs in a restricted position on the ventral side of the outer body chamber whorl and does not affect either the aperture or the phragmocone. Ammonoid specimens revealing ventral bite marks used in this study were collected from a wide range of strata which range in age from the Lower Jurassic to the uppermost Cretaceous (close to the Cretaceous–Paleogene boundary). These ventral bite marks are absent in the Paleozoic collections studied. The vast majority of ventral bite marks are situated at the end of the body chamber, close to the phragmocone. This is interpreted as the result of predatory attacks on the back or blind side of ammonoids in their living position. The predators aimed for the vital parts and muscle attachments to obtain the edible soft tissues. The agents for most of the ventral bite marks to ammonoids are probably coleoid cephalopods (especially teuthoids) and predatory fishes to a lesser extent.  相似文献   

12.
In this study, organ samples from 426 common seals Phoca vitulina, 298 harbour porpoises Phocoena phocoena, 34 grey seals Halichoerus grypus and 10 other marine mammals were assessed for the presence of Brucella species. Forty-seven common seals, 2 harbour porpoises and 1 grey seal were found to be positive for these bacteria. A total of 91 Brucella strains were successfully isolated, due to the fact that Brucella spp. were found in more than one organ sample in 15 animals. The primary organ in which the bacteria were present was the lung. In addition, 2 strains were isolated from lungworms (Parafilaroides spp.). Forty-nine of the isolated strains were selected for further analysis using conventional phenotyping methods. Molecular characterisation was carried out by analysing the IS711 and omp2 loci. With respect to the distribution of the IS711 loci in the genome, the 49 field isolates differed strongly from the terrestrial Brucella species and marginally from the marine Brucella reference strain NCTC12890. Based on the results of the PCR restriction fragment length polymorphism (PCR-RFLP) investigation of the omp2 locus, the majority of the Brucella field isolates were classified as B. pinnipediae, recently proposed B. pinnipedialis, possessing 1 omp2a gene and 1 omp2b gene. Two field isolates revealed the presence of 2 omp2a genes, as has been described for Brucella ovis. To our knowledge, these results confirm for the first time the presence of Brucella species in the marine mammal population of the German North Sea. These findings highlight the need for additional research on the relevance of these Brucella species for marine hosts and their environment.  相似文献   

13.
The harbour porpoise (Phocoena phocoena) is widely distributed in the North Sea. During both the SCANS 1994 and 2005 surveys, porpoises were commonly encountered in offshore waters, for example in the central German Bight. However, information on year-round abundance and distribution of harbour porpoises in that area on a monthly basis was lacking. Between 2002 and 2004, we undertook 26 aerial line-transect surveys in a 2,600 km2 area in the central German Bight, 100 km north of the Island of Borkum (Eastern Frisia). Data were analysed with DISTANCE software. A total of 406 porpoises were sighted. Sighting rates (=sightings/km transect) peaked in July 2002, February, May and September 2003, and in January and April 2004. Absolute densities (g(0) corrected) ranged between 0.14 and 1.54 animals/km2 (peak in April 2004). Proportion of calves varied between 3.4 and 27.3%. Our results show a highly irregular appearance of harbour porpoises in the study area with no apparent seasonal trends in occurrence but peaks in single months. We propose that the area is used as a transit route with harbour porpoise moving in from regions of high density in summer (Northern Frisia) and early spring (Eastern Frisia).  相似文献   

14.
Bite mark injuries often feature in violent crimes. Conventional morphometric methods for the forensic analysis of bite marks involve elements of subjective interpretation that threaten the credibility of this field. Human DNA recovered from bite marks has the highest evidentiary value, however recovery can be compromised by salivary components. This study assessed the feasibility of matching bacterial DNA sequences amplified from experimental bite marks to those obtained from the teeth responsible, with the aim of evaluating the capability of three genomic regions of streptococcal DNA to discriminate between participant samples. Bite mark and teeth swabs were collected from 16 participants. Bacterial DNA was extracted to provide the template for PCR primers specific for streptococcal 16S ribosomal RNA (16S rRNA) gene, 16S–23S intergenic spacer (ITS) and RNA polymerase beta subunit (rpoB). High throughput sequencing (GS FLX 454), followed by stringent quality filtering, generated reads from bite marks for comparison to those generated from teeth samples. For all three regions, the greatest overlaps of identical reads were between bite mark samples and the corresponding teeth samples. The average proportions of reads identical between bite mark and corresponding teeth samples were 0.31, 0.41 and 0.31, and for non-corresponding samples were 0.11, 0.20 and 0.016, for 16S rRNA, ITS and rpoB, respectively. The probabilities of correctly distinguishing matching and non-matching teeth samples were 0.92 for ITS, 0.99 for 16S rRNA and 1.0 for rpoB. These findings strongly support the tenet that bacterial DNA amplified from bite marks and teeth can provide corroborating information in the identification of assailants.  相似文献   

15.
There is increasing concern for the well-being of cetacean populations around the UK. Tattoo skin disease (characterised by irregular, grey, black or yellowish, stippled cutaneous lesions) caused by poxvirus infection is a potential health indicatora potential health indicator for cetaceans. Limited sequence data indicates that cetacean poxviruses (CPVs) belong to an unassigned genus of the Chordopoxvirinae. To obtain further insight into the phylogenetic relationships between CPV and other Chordopoxvirinae members we partially characterized viral DNA originating from tattoo lesions collected in Delphinidae and Phocoenidae stranded along the UK coastline in 1998–2008. We also evaluated the presence of CPV in skin lesions other than tattoos to examine specificity and sensitivity of visual diagnosis. After DNA extraction, regions of the DNA polymerase and DNA topoisomerase I genes were amplified by PCR, sequenced and compared with other isolates. The presence of CPV DNA was demonstrated in tattoos from one striped dolphin (Stenella coeruleoalba), eight harbour porpoises (Phocoena phocoena) and one short-beaked common dolphin (Delphinus delphis) and in one ‘dubious tattoo’ lesion detected in one other porpoise. Seventeen of the 18 PCR positive skin lesions had been visually identified as tattoos and one as a dubious tattoo. None of the other skin lesions were PCR positive. Thus, visual identification had a 94.4% sensitivity and 100% specificity. The DNA polymerase PCR was most effective in detecting CPV DNA. Limited sequence phylogeny grouped the UK samples within the odontocete poxviruses (CPV group 1) and indicated that two different poxvirus lineages infect the Phocoenidae and the Delphinidae. The phylogenetic tree had three major branches: one with the UK Phocoenidae viruses, one with the Delphinidae isolates and one for the mysticete poxvirus (CPV group 2). This implies a radiation of poxviruses according to the host suborder and the families within these suborders.  相似文献   

16.
Many animals respond to predation risk by forming groups. Evolutionary explanations for group formation in previously ungrouped, but loosely associated prey have typically evoked the selfish herd hypothesis. However, despite over 600 studies across a diverse array of taxa, the critical assumptions of this hypothesis have remained collectively untested, owing to several confounding problems in real predator–prey systems. To solve this, we manipulated the domains of danger of Cape fur seal (Arctocephalus pusillus pusillus) decoys to provide evidence that a selfish reduction in a seals'' domain of danger results in a proportional reduction in its predation risk from ambush shark attacks. This behaviour confers a survival advantage to individual seals within a group and explains the evolution of selfish herds in a prey species. These findings empirically elevate Hamilton''s selfish herd hypothesis to more than a ‘theoretical curiosity’.  相似文献   

17.
Dead Sooty Shearwater, Puffinus griseus, chicks and adults were collected from seven colonies on South Island, New Zealand in the 1993–96 breeding seasons. An estimated 97% of 118 deaths were from predation. Thirty‐four definite predator bite pairs were identified on 27 carcasses. Twenty‐one (78%) of the carcasses had bite pairs with intercanine distances < 9.5 mm which suggests that Stoats (Mustela erminea) were the principal predators. One chick was killed by a feral House Cat (Felis catus), and it is likely that feral Ferrets (M. furo) were responsible for a proportion of the deaths. Nearly three quarters of definite Stoat bite pairs were identified in the head region. The analyses of bite marks offers cheap and statistically reliable identification of predators provided carcasses are collected fresh and flesh is removed to examine tooth punctures in bone.  相似文献   

18.
Recent climate change has triggered profound reorganization in northeast Atlantic ecosystems, with substantial impact on the distribution of marine assemblages from plankton to fishes. However, assessing the repercussions on apex marine predators remains a challenging issue, especially for pelagic species. In this study, we use Bayesian coalescent modelling of microsatellite variation to track the population demographic history of one of the smallest temperate cetaceans, the harbour porpoise (Phocoena phocoena) in European waters. Combining genetic inferences with palaeo-oceanographic and historical records provides strong evidence that populations of harbour porpoises have responded markedly to the recent climate-driven reorganization in the eastern North Atlantic food web. This response includes the isolation of porpoises in Iberian waters from those further north only approximately 300 years ago with a predominant northward migration, contemporaneous with the warming trend underway since the ‘Little Ice Age’ period and with the ongoing retreat of cold-water fishes from the Bay of Biscay. The extinction or exodus of harbour porpoises from the Mediterranean Sea (leaving an isolated relict population in the Black Sea) has lacked a coherent explanation. The present results suggest that the fragmentation of harbour distribution range in the Mediterranean Sea was triggered during the warm ‘Mid-Holocene Optimum’ period (approx. 5000 years ago), by the end of the post-glacial nutrient-rich ‘Sapropel’ conditions that prevailed before that time.  相似文献   

19.
In recent years, jellyfish blooms have attracted considerable scientific interest for their potential impacts on human activities and ecosystem functioning, with much attention paid to jellyfish as predators and to gelatinous biomass as a carbon sink. Other than qualitative data and observations, few studies have quantified direct predation of fish on jellyfish to clarify whether they may represent a seasonally abundant food source. Here we estimate predation frequency by the commercially valuable Mediterranean bogue, Boops boops on the mauve stinger jellyfish, Pelagia noctiluca, in the Strait of Messina (NE Sicily). A total of 1054 jellyfish were sampled throughout one year to quantify predation by B. boops from bite marks on partially eaten jellyfish and energy density of the jellyfish. Predation by B. boops in summer was almost twice that in winter, and they selectively fed according to medusa gender and body part. Calorimetric analysis and biochemical composition showed that female jellyfish gonads had significantly higher energy content than male gonads due to more lipids and that gonads had six-fold higher energy content than the somatic tissues due to higher lipid and protein concentrations. Energetically, jellyfish gonads represent a highly rewarding food source, largely available to B. boops throughout spring and summer. During the remainder of the year, when gonads were not very evident, fish predation switched towards less-selective foraging on the somatic gelatinous biomass. P. noctiluca, the most abundant jellyfish species in the Mediterranean Sea and a key planktonic predator, may represent not only a nuisance for human leisure activities and a source of mortality for fish eggs and larvae, but also an important resource for fish species of commercial value, such as B. boops.  相似文献   

20.
Harbour seals in Svalbard have short longevity, despite being protected from human hunting and having limited terrestrial predation at their haulout sites, low contaminant burdens and no fishery by-catch issues. This led us to explore the diet of Greenland sharks (Somniosus microcephalus) in this region as a potential seal predator. We examined gastrointestinal tracts (GITs) from 45 Greenland sharks in this study. These sharks ranged from 229 to 381?cm in fork length and 136–700?kg in body mass; all were sexually immature. Seal and whale tissues were found in 36.4 and 18.2%, respectively, of the GITs that had contents (n?=?33). Based on genetic analyses, the dominant seal prey species was the ringed seal (Pusa hispida); bearded seal (Erignathus barbatus) and hooded seal (Cystophora cristata) tissues were each found in a single shark. The sharks had eaten ringed seal pups and adults based on the presence of lanugo-covered prey (pups) and age determinations based on growth rings on claws (≤1?year and adults). All of the whale tissue was from minke whale (Balenoptera acutorostrata) offal, from animals that had been harvested in the whale fishery near Svalbard. Fish dominated the sharks’ diet, with Atlantic cod (Gadus morhua), Atlantic wolffish (Anarhichas lupus) and haddock (Melanogrammus aeglefinus) being the most important fish species. Circumstantial evidence suggests that these sharks actively prey on seals and fishes, in addition to eating carrion such as the whale tissue. Our study suggests that Greenland sharks may play a significant predatory role in Arctic food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号