首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function.  相似文献   

3.
4.
Functional and mechanistic studies of Wnt signaling have been severely hindered by the inaccessibility of bioactive proteins. To overcome this long-standing barrier, we engineered and characterized a panel of Chinese hamster ovary (CHO) cell lines with inducible transgenes encoding tagged and un-tagged human WNT1, WNT3A, WNT5A, WNT7A, WNT11, WNT16 or the soluble Wnt antagonist Fzd8CRD, all integrated into an identical genomic locus. Using a quantitative real-time bioluminescence assay, we show that cells expressing WNT1, 3A and 7A stimulate Wnt/beta-catenin reporter activity, while the other WNT expressing cell lines interfere with this activation. Additionally, in contrast to WNT3A, WNT1 only exhibits activity when cell-associated, and thus only signals to neighboring cells. The reporter assay also revealed a rapid decline of Wnt activity at 37°C, indicating that Wnt activity is highly labile. These engineered cell lines will reduce the cost of making and purifying Wnt proteins and serve as a continuous, reliable and regulatable source of Wnts to research laboratories around the world.  相似文献   

5.

Background

Tail-anchored (TA) proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope.

Methodology/Principal Findings

Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34) and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9). Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein.

Conclusions/Significance

Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie the delivery of TA proteins to their proper intracellular locations in general.  相似文献   

6.
7.
8.
9.
10.
Coding rules for amino acids in the genetic code are discussed from the point that the genetic code is a minimal code ofmutational deterioration. The global mutational deterioration(GMD) function is defined through several parameters describingsingle base mutations and amino acid distances. The problem ofsearching for the global minimum of the GMD function is discussedin some detail. From GMD minimization under initial constraintswe have succeeded in deducing the standard genetic code.  相似文献   

11.
Stress conditions lead to a variety of physiological responses at the cellular level. Autophagy is an essential process used by animal, plant, and fungal cells that allows for both recycling of macromolecular constituents under conditions of nutrient limitation and remodeling the intracellular structure for cell differentiation. To elucidate the molecular basis of autophagic protein transport to the vacuole/lysosome, we have undertaken a morphological and biochemical analysis of this pathway in yeast.  相似文献   

12.
The evolution of the genetic code in terms of the adoption of new codons has previously been related to the relative thermostability of codon–anticodon interactions such that the most stable interactions have been hypothesised to represent the most ancient coding capacity. This derivation is critically dependent on the accuracy of the experimentally determined stability parameters. A new set of parameters recently determined for B-DNA reveals that the codon–anticodon pairs for the codes in non-plant mitochondria on the one hand and prokaryotic and eukaryotic organisms on the other can be unequivocally divided into two classes – the most stable base steps define a common code specified by the first two bases in a codon while the less stable base steps correlate with divergent usage and the adoption of a 3-letter code. This pattern suggests that the fixation of codons for A, G, P, V, S, T, D/E, R may have preceded the divergence of the non-plant mitochondrial line from other organisms. Other variations in the code correlate with the least stable codon–anticodon pairs. Presented at: National Workshop on Astrobiology: Search for Life in the Solar System, Capri, Italy, 26 to 28 October, 2005.  相似文献   

13.
14.
During the RNA World, organisms experienced high rates of genetic errors, which implies that there was strong evolutionary pressure to reduce the errors’ phenotypical impact by suitably structuring the still-evolving genetic code. Therefore, the relative rates of the various types of genetic errors should have left characteristic imprints in the structure of the genetic code. Here, we show that, therefore, it is possible to some extent to reconstruct those error rates, as well as the nucleotide frequencies, for the time when the code was fixed. We find evidence indicating that the frequencies of G and C in the genome were not elevated. Since, for thermodynamic reasons, RNA in thermophiles tends to possess elevated G+C content, this result indicates that the fixation of the genetic code occurred in organisms which were either not thermophiles or that the code’s fixation occurred after the rise of DNA. Supplementary Materials Original data and programs are available at the author’s web site: .  相似文献   

15.
16.
Polypeptides in the motor axons of the sciatic nerve in 120-day-old normal and diabetic mice C57BL/Ks (db/db) were labeled by injection of [35S]methionine into the ventral horn of the spinal cord. At 8, 15, and 25 days after the injection, the distribution of radiolabeled polypeptides along the sciatic nerve was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Four major radiolabeled polypeptides, tentatively identified as actin, tubulin, and the two lightest subunits of the neurofilament triplet, were studied in both diabetic and control mice. In the diabetic animals, the two polypeptides identified as actin and tubulin showed a reduction of average velocity of migration along the sciatic nerve, resulting in a higher fraction of radioactivity in the proximal part of the sciatic nerve, whereas the front of radioactivity (advancing at maximal velocity) moved at a normal rate. In contrast, both the average and maximal velocities of the two neurofilament subunits were slower in the diabetic mice than in the control mice. These results indicate that the axonal transport of the cytoskeletal proteins is differentially affected in the course of diabetic neuropathy, and may suggest that the impairment concerns mainly the proteins carried by the slowest component of axonal transport.  相似文献   

17.
In Mycoplasma pneumoniae and several other mollicutes, the UGA opal codon specifies tryptophan rather than a translation stop. This often makes it difficult to express Mycoplasma proteins in heterologous hosts. In this work, we demonstrate that mollicute proteins can be fused to an affinity tag and be expressed directly in M. pneumoniae. The protein can then be purified by affinity chromatography and be used for biochemical or any other desired analysis.  相似文献   

18.
Protein homeostasis depends on a balance of translation, folding, and degradation. Here, we demonstrate that mild inhibition of translation results in a dramatic and disproportional reduction in production of misfolded polypeptides in mammalian cells, suggesting an improved folding of newly synthesized proteins. Indeed, inhibition of translation elongation, which slightly attenuated levels of a copepod GFP mutant protein, significantly enhanced its function. In contrast, inhibition of translation initiation had minimal effects on copepod GFP folding. On the other hand, mild suppression of either translation elongation or initiation corrected folding defects of the disease-associated cystic fibrosis transmembrane conductance regulator mutant F508del. We propose that modulation of translation can be used as a novel approach to improve overall proteostasis in mammalian cells, as well as functions of disease-associated mutant proteins with folding deficiencies.  相似文献   

19.
Since the early days of the discovery of the genetic code nonrandom patterns have been searched for in the code in the hope of providing information about its origin and early evolution. Here we present a new classification scheme of the genetic code that is based on a binary representation of the purines and pyrimidines. This scheme reveals known patterns more clearly than the common one, for instance, the classification of strong, mixed, and weak codons as well as the ordering of codon families. Furthermore, new patterns have been found that have not been described before: Nearly all quantitative amino acid properties, such as Woeses polarity and the specific volume, show a perfect correlation to Lagerkvists codon–anticodon binding strength. Our new scheme leads to new ideas about the evolution of the genetic code. It is hypothesized that it started with a binary doublet code and developed via a quaternary doublet code into the contemporary triplet code. Furthermore, arguments are presented against suggestions that a simpler code, where only the midbase was informational, was at the origin of the genetic code.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号