首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ochrobactrum sp. strain SJY1 utilizes nicotine as a sole source of carbon, nitrogen, and energy via a variant of the pyridine and pyrrolidine pathways (the VPP pathway). Several strains and genes involved in the VPP pathway have recently been reported; however, the first catalyzing step for enzymatic turnover of nicotine is still unclear. In this study, a nicotine hydroxylase for the initial hydroxylation step of nicotine degradation was identified and characterized. The nicotine hydroxylase (VppA), which converts nicotine to 6-hydroxynicotine in the strain SJY1, is encoded by two open reading frames (vppAS and vppAL [subunits S and L, respectively]). The vppA genes were heterologously expressed in the non-nicotine-degrading strains Escherichia coli DH5α and Pseudomonas putida KT2440; only the Pseudomonas strain acquired the ability to degrade nicotine. The small subunit of VppA contained a [2Fe-2S] cluster-binding domain, and the large subunit of VppA contained a molybdenum cofactor-binding domain; however, an FAD-binding domain was not found in VppA. Resting cells cultivated in a molybdenum-deficient medium had low nicotine transformation activity, and excess molybdenum was detected in the purified VppA by inductively coupled plasma-mass spectrometry analysis. Thus, it is demonstrated that VppA is a two-component molybdenum-containing hydroxylase.  相似文献   

2.
Nicotine is an important environmental toxicant in tobacco waste. Shinella sp. strain HZN7 can metabolize nicotine into nontoxic compounds via variations of the pyridine and pyrrolidine pathways. However, the catabolic mechanism of this variant pathway at the gene or enzyme level is still unknown. In this study, two 6-hydroxynicotine degradation-deficient mutants, N7-M9 and N7-W3, were generated by transposon mutagenesis. The corresponding mutant genes, designated nctB and tnp2, were cloned and analyzed. The nctB gene encodes a novel flavin adenine dinucleotide-containing (S)-6-hydroxynicotine oxidase that converts (S)-6-hydroxynicotine into 6-hydroxy-N-methylmyosmine and then spontaneously hydrolyzes into 6-hydroxypseudooxynicotine. The deletion and complementation of the nctB gene showed that this enzyme is essential for nicotine or (S)-6-hydroxynicotine degradation. Purified NctB could also convert (S)-nicotine into N-methylmyosmine, which spontaneously hydrolyzed into pseudooxynicotine. The kinetic constants of NctB toward (S)-6-hydroxynicotine (Km = 0.019 mM, kcat = 7.3 s−1) and nicotine (Km = 2.03 mM, kcat = 0.396 s−1) indicated that (S)-6-hydroxynicotine is the preferred substrate in vivo. NctB showed no activities toward the R enantiomer of nicotine or 6-hydroxynicotine. Strain HZN7 could degrade (R)-nicotine into (R)-6-hydroxynicotine without any further degradation. The tnp2 gene from mutant N7-W3 encodes a putative transposase, and its deletion did not abolish the nicotine degradation activity. This study advances the understanding of the microbial diversity of nicotine biodegradation.  相似文献   

3.
6-Hydroxy-3-succinoyl-pyridine (HSP) 3-monooxygenase (HspB), a flavoprotein essential to the pyrrolidine pathway of nicotine degradation, catalyzes pyridine-ring β-hydroxylation, resulting in carbon-carbon cleavage and production of 2,5-dihydroxypyridine. Here, we generated His6-tagged HspB in Escherichia coli, characterized the properties of the recombinant enzyme, and investigated its mechanism of catalysis. In contrast to conclusions reported previously, the second product of the HspB reaction was shown to be succinate, with isotope labeling experiments providing direct evidence that the newly introduced oxygen atom of succinate is derived from H2O. Phylogenetic analysis reveals that HspB is the most closely related to two p-nitrophenol 4-monooxygenases, and the experimental results exhibit that p-nitrophenol is a substrate of HspB. The reduction of HspB (with maxima at 375 and 460 nm, and a shoulder at 485 nm) by NADH was followed by stopped-flow spectroscopy, and the rate constant for reduction was shown to be stimulated by HSP. Reduced HspB reacts with oxygen to form a C(4a)-(hydro)peroxyflavin intermediate with an absorbance maximum at ∼400 nm within the first few milliseconds before converting to the oxidized flavoenzyme species. The formed C(4a)-hydroperoxyflavin intermediate reacts with HSP to form an intermediate that hydrolyzes to the products 2,5-dihydroxypyridine and succinate. The investigation on the catalytic mechanism of a flavoprotein pyridine-ring β-position hydroxylase provides useful information for the biosynthesis of pyridine derivatives.  相似文献   

4.
Nicotine is a main alkaloid in tobacco and is also the primary toxic compound in tobacco wastes. It can be degraded by bacteria via either pyridine pathway or pyrrolidine pathway. Previously, a fused pathway of the pyridine pathway and the pyrrolidine pathway was proposed for nicotine degradation by Agrobacterium tumefaciens S33, in which 6-hydroxy-3-succinoylpyridine (HSP) is a key intermediate connecting the two pathways. We report here the purification and properties of an NADH-dependent HSP hydroxylase from A. tumefaciens S33. The 90-kDa homodimeric flavoprotein catalyzed the oxidative decarboxylation of HSP to 2,5-dihydroxypyridine (2,5-DHP) in the presence of NADH and FAD at pH 8.0 at a specific rate of about 18.8±1.85 µmol min−1 mg protein−1. Its gene was identified by searching the N-terminal amino acid residues of the purified protein against the genome draft of the bacterium. It encodes a protein composed of 391 amino acids with 62% identity to HSP hydroxylase (HspB) from Pseudomonas putida S16, which degrades nicotine via the pyrrolidine pathway. Considering the application potential of 2,5-DHP in agriculture and medicine, we developed a route to transform HSP into 2,5-DHP with recombinant HSP hydroxylase and an NADH-regenerating system (formate, NAD+ and formate dehydrogenase), via which around 0.53±0.03 mM 2,5-DHP was produced from 0.76±0.01 mM HSP with a molar conversion as 69.7%. This study presents the biochemical properties of the key enzyme HSP hydroxylase which is involved in the fused nicotine degradation pathway of the pyridine and pyrrolidine pathways and a new green route to biochemically synthesize functionalized 2,5-DHP.  相似文献   

5.
Nicotine, a major toxic alkaloid in tobacco wastes, is degraded by bacteria, mainly via pyridine and pyrrolidine pathways. Previously, we discovered a new hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33 and characterized its key enzyme 6-hydroxy-3-succinoylpyridine (HSP) hydroxylase. Here, we purified the nicotine dehydrogenase initializing the nicotine degradation from the strain and found that it forms a complex with a novel 6-hydroxypseudooxynicotine oxidase. The purified complex is composed of three different subunits encoded by ndhAB and pno, where ndhA and ndhB overlap by 4 bp and are ∼26 kb away from pno. As predicted from the gene sequences and from chemical analyses, NdhA (82.4 kDa) and NdhB (17.1 kDa) harbor a molybdopterin cofactor and two [2Fe-2S] clusters, respectively, whereas Pno (73.3 kDa) harbors an flavin mononucleotide and a [4Fe-4S] cluster. Mutants with disrupted ndhA or ndhB genes did not grow on nicotine but grew well on 6-hydroxynicotine and HSP, whereas the pno mutant did not grow on nicotine or 6-hydroxynicotine but grew well on HSP, indicating that NdhA and NdhB are responsible for initialization of nicotine oxidation. We successfully expressed pno in Escherichia coli and found that the recombinant Pno presented 2,6-dichlorophenolindophenol reduction activity when it was coupled with 6-hydroxynicotine oxidation. The determination of reaction products catalyzed by the purified enzymes or mutants indicated that NdhAB catalyzed nicotine oxidation to 6-hydroxynicotine, whereas Pno oxidized 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde pyridine. These results provide new insights into this novel hybrid pathway of nicotine degradation in A. tumefaciens S33.  相似文献   

6.
Nicotine is a significant toxic waste generated in tobacco manufacturing. Biological methods for the degradation of nicotine waste are in high demand. In this study, we report the identification and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. This strain can degrade 500 mg/L nicotine completely within 3 h at 30 °C and pH values of 6.5?~?8.0. The biodegradation of nicotine by Shinella sp. HZN7 involves five intermediate metabolites: 6-hydroxy-nicotine (6HN), 6-hydroxy-N-methylmyosmine, 6-hydroxypseudooxynicotine (6HPON), 6-hydroxy-3-succinoyl-pyridine (HSP), and 2,5-dihydroxypyridine, as detected by ultraviolet spectrophotometry, HPLC, and LC-MS. We generated three mutants, N7-W18, N7-X5, and N7-M17, by transposon mutagenesis, in which the nicotine-degrading pathway terminated at 6HN, 6HPON, and HSP, respectively. The production of the five intermediate metabolites and their order in the degradation pathway were confirmed in the three mutants, indicating that strain HZN7 degrades nicotine via a variant of the pyridine and pyrrolidine pathways. The mutant gene from strain N7-X5, orf2, was cloned by self-formed adaptor PCR, but the nucleotide and amino acid sequence showed no similarity to any gene or gene product with defined function. However, orf2 disruption and complementation suggested that the orf2 gene is essential for the conversion of 6HPON to HSP in strain HZN7. This is the first study to provide genetic evidence for this variant nicotine degradation pathway.  相似文献   

7.
Nicotine, a major alkaloid in tobacco plants and the main toxic chemical in tobacco wastes, can be transformed by bacteria into hydroxylated-pyridine intermediates, which are important precursors for the chemical synthesis of valuable drugs and insecticides. Such biotransformation could be a useful approach to utilize tobacco and its wastes. In this study, we explored nicotine degradation by a recently isolated Agrobacterium tumefaciens S33 by identifying the intermediates during its growth on nicotine and during transformation of nicotine with its resting cells. Five hydroxylated-pyridine intermediates were detected through multiple approaches, including GC-HR-MS, HPLC, and ESI-Q-TOF MS analyses. Surprisingly, these identified intermediates suggest that strain S33 employs a novel pathway that is different from the two characterized pathways described in Arthrobacter and Pseudomonas. Based on these findings, we propose that strain S33 is able to transform nicotine to 6-hydroxy-pseudooxynicotine first via the pyridine pathway through 6-hydroxy-L: -nicotine and 6-hydroxy-N-methylmyosmine, and then, it turns to the pyrrolidine pathway with the formation of 6-hydroxy-3-succinoylpyridine and 2,5-dihydroxypyridine. The activities of the key enzymes, nicotine dehydrogenase, 6-hydroxy-L: -nicotine oxidase, and 6-hydroxy-3-succinoylpyridine hydroxylase, were demonstrated in the cell extract of strain S33 and by partially enriched enzymes. Moreover, the cell extract could transform 6-hydroxy-pseudooxynicotine into 6-hydroxy-3-succinoylpyridine by coupling with 6-hydroxy-L: -nicotine oxidation reaction by 6-hydroxy-L: -nicotine oxidase. These results indicated that strain S33 can transform nicotine into renewable hydroxylated-pyridine intermediates by the special pathway, in which at least three intermediates, 6-hydroxy-L: -nicotine, 6-hydroxy-3-succinoylpyridine, and 2,5-dihydroxypyridine, have potential to be further chemically modified into useful compounds.  相似文献   

8.
Previous research suggested that Pseudomonas spp. may attack the pyrrolidine ring of nicotine in a way similar to mammalian metabolism, resulting in the formation of pseudooxynicotine, the direct precursor of a potent tobacco-specific lung carcinogen. In addition, the subsequent intermediates, 6-hydroxy-3-succinoylpyridine (HSP) and 2,5-dihydroxypyridine (DHP) in the Pseudomonas nicotine degradation pathway are two important precursors for drug syntheses. However, there is little information on the molecular mechanism for nicotine degradation via the pyrrolidine pathway until now. In this study we cloned and sequenced a 4,879-bp gene cluster involved in nicotine degradation. Intermediates N-methylmyosmine, pseudooxynicotine, 3-succinoylpyridine, HSP, and DHP were identified from resting cell reactions of the transformant containing the gene cluster and shown to be identical to those of the pyrrolidine pathway reported in wild-type strain Pseudomonas putida S16. The gene for 6-hydroxy-3-succinoylpyridine hydroxylase (HSP hydroxylase) catalyzing HSP directly to DHP was cloned, sequenced, and expressed in Escherichia coli, and the purified HSP hydroxylase (38 kDa) is NADH dependent. DNA sequence analysis of this 936-bp fragment reveals that the deduced amino acid shows no similarity with any protein of known function.  相似文献   

9.
Nicotine, the main alkaloid produced by Nicotiana tabacum and other Solanaceae, is very toxic and may be a leading toxicant causing preventable disease and death, with the rise in global tobacco consumption. Several different microbial pathways of nicotine metabolism have been reported: Arthrobacter uses the pyridine pathway, and Pseudomonas, like mammals, uses the pyrrolidine pathway. We identified and characterized a novel 6-hydroxy-3-succinoyl-pyridine (HSP) hydroxylase (HspB) using enzyme purification, peptide sequencing, and sequencing of the Pseudomonas putida S16 genome. The HSP hydroxylase has no known orthologs and converts HSP to 2,5-dihydroxy-pyridine and succinic semialdehyde, using NADH. (18)O(2) labeling experiments provided direct evidence for the incorporation of oxygen from O(2) into 2,5-dihydroxy-pyridine. The hspB gene deletion showed that this enzyme is essential for nicotine degradation, and site-directed mutagenesis identified an FAD-binding domain. This study demonstrates the importance of the newly discovered enzyme HspB, which is crucial for nicotine degradation by the Pseudomonas strain.  相似文献   

10.
A virtually identical nicotine catabolic pathway including the heterotrimeric molybdenum enzyme nicotine and 6-hydroxy-pseudo-oxynicotine dehydrogenase, 6-hydroxy-l-nicotine oxidase, 2,6-dihydroxy-pseudo-oxynicotine hydrolase, and 2,6-dihydroxypyridine hydroxylase have been identified in A. nicotinovorans and Nocardioides sp. JS614. Enzymes catalyzing the same reactions and similar protein antigens were detected in the extracts of the two microorganisms. Nicotine blue and methylamine, two end products of nicotine catabolism were detected in the growth medium of both bacterial species. Nicotine catabolic genes are clustered on pAO1 in A. nicotinovorans, but located chromosomally in Nocardioides sp. JS614.  相似文献   

11.
There are quite a few ongoing biochemical investigations of nicotine degradation in different organisms. In this work, we identified and sequenced a gene (designated nicA) involved in nicotine degradation by Pseudomonas putida strain S16. The gene product, NicA, was heterologously expressed and characterized as a nicotine oxidoreductase catalyzing the initial steps of nicotine metabolism. Biochemical analyses using resting cells and the purified enzyme suggested that nicA encodes an oxidoreductase, which converts nicotine to 3-succinoylpyridine through pseudooxynicotine. Based on enzymatic reactions and direct evidence obtained using H218O labeling, the process may consist of enzyme-catalyzed dehydrogenation, followed by spontaneous hydrolysis and then repetition of the dehydrogenation and hydrolysis steps. Sequence comparisons revealed that the gene showed 40% similarity to genes encoding NADH dehydrogenase subunit I and cytochrome c oxidase subunit I in eukaryotes. Our findings demonstrate that the molecular mechanism for nicotine degradation in strain S16 involves the pyrrolidine pathway and is similar to the mechanism in mammals, in which pseudooxynicotine, the direct precursor of a potent tobacco-specific lung carcinogen, is produced.  相似文献   

12.
【目的】分离并鉴定1株具有尼古丁降解能力的细菌,研究其尼古丁降解特性并对其降解基因进行分析,为尼古丁微生物降解提供基础。【方法】从烟草种植地土壤中分离1株具有尼古丁降解能力的细菌,通过16S r RNA基因和生理生化特性对该菌株进行鉴定,检测该菌株尼古丁降解率与生长量的关系,并进一步对该菌株进行尼古丁浓度耐受性测定,采用高通量测序技术对菌株进行全基因组测序,BLAST比对分析尼古丁降解相关基因。【结果】筛选到1株具有尼古丁降解能力的细菌,经鉴定命名为根癌土壤杆菌(Agrobacterium tumerficience)SCUEC1菌株,根癌土壤杆菌SCUEC1菌株尼古丁降解率可达到94.81%,该菌株在尼古丁浓度为0.50–5.00 g/L范围内生长良好且有较高的尼古丁降解能力。对根癌土壤杆菌SCUEC1菌株全基因组序列进行BLAST比对分析,推测该菌株的尼古丁降解代谢途径与中间苍白杆菌SYJ1菌株的尼古丁降解途径相似。【结论】本研究揭示了Agrobacterium tumerficienceSCUEC1菌株具备尼古丁降解特性,初步推测出尼古丁降解相关基因和降解代谢途径,为尼古丁微生物降解提供基础。  相似文献   

13.
Management of solid wastes with high nicotine content, such as those accumulated during tobacco manufacturing, poses a major challenge, which can be addressed by using bacteria such as Pseudomonas and Arthrobacter. In this study, a new species of Pseudomonas geniculata, namely strain N1, which is capable of efficiently degrading nicotine, was isolated and identified. The optimal growth conditions for strain N1 are a temperature of 30°C, and a pH 6.5, at a rotation rate of 120 rpm min−1 with 1 g l−1 nicotine as the sole source of carbon and nitrogen. Myosmine, cotinine, 6-hydroxynicotine, 6-hydroxy-N-methylmyosmine, and 6-hydroxy-pseudooxynicotine were detected as the five intermediates through gas chromatography-mass and liquid chromatography-mass analyses. The identified metabolites were different from those generated by Pseudomonas putida strains. The analysis also highlighted the bacterial metabolic diversity in relation to nicotine degradation by different Pseudomonas strains.  相似文献   

14.
Aims: Isolation and characterization of nicotine‐degrading bacteria with advantages suitable for the treatment of nicotine‐contaminated water and soil and detection of their metabolites. Methods and Results: A novel nicotine‐degrading bacterial strain was isolated from tobacco field soil. Based on morphological and physiochemical properties and sequence of 16S rDNA, the isolate was identified as Pseudomonas sp., designated as CS3. The optimal culture conditions of strain CS3 for nicotine degradation were 30°C and pH 7·0. However, the strain showed broad pH adaptability with high nicotine‐degrading activity between pH 6·0 and 10·0. Strain CS3 could decompose nicotine nearly completely within 24 h in liquid culture (1000 mg L?1 nicotine) or within 72 h in soil (1000–2500 mg kg?1 nicotine) and could endure up to 4000 mg L?1 nicotine in liquid media and 5000 mg kg?1 nicotine in soil. Degradation tests in flask revealed that the strain had excellent stability and high degradation activity during the repetitive degradation processes. Additionally, three intermediates, 3‐(3,4‐dihydro‐2H‐pyrrol‐5‐yl) pyridine, 1‐methyl‐5‐(3‐pyridyl) pyrrolidine‐2‐ol and cotinine, were identified by GC/MS and NMR analyses. Conclusions: The isolate CS3 showed outstanding nicotine‐degrading characteristics such as high degradation efficiency, strong substrate endurance, broad pH adaptability, and stability and persistence in repetitive degradation processes and may serve as an excellent candidate for applications in the bioaugmentation process to treat nicotine‐contaminated water and soil. Also, detection of nicotine metabolites suggests that strain CS3 might decompose nicotine via a unique nicotine‐degradation pathway. Significance and Impact of the Study: The advantage of applying the isolated strain lies in broad pH adaptability and stability and persistence in repetitive use, the properties previously less focused in other nicotine‐degrading micro‐organisms. The strain might decompose nicotine via a nicotine‐degradation pathway different from those of other nicotine‐utilizing Pseudomonas bacteria reported earlier, another highlight in this study.  相似文献   

15.
Nornicotine is a natural alkaloid produced by plants in the genus Nicotiana and is structurally related to nicotine. Importantly, nornicotine is the direct precursor of tobacco-specific nitrosamine N′-nitrosonornicotine, which is a highly potent human carcinogen. Microbial detoxification and degradation of nicotine have been well characterized; however, until now, there has been no information on the molecular mechanism of nornicotine degradation. In this study, we demonstrate the transformation of nornicotine by the nicotine-degrading strain Shinella sp. HZN7. Three transformation products were identified as 6-hydroxy-nornicotine, 6-hydroxy-myosmine, and 6-hydroxy-pseudooxy-nornicotine by UV spectroscopy, high-resolution mass spectrometry, nuclear magnetic resonance, and Fourier transform-infrared spectroscopy analyses. The two-component nicotine dehydrogenase genes nctA1 and nctA2 were cloned, and their product, NctA, was confirmed to be responsible for the conversion of nornicotine into 6-hydroxy-nornicotine as well as nicotine into 6-hydroxy-nicotine. The 6-hydroxy-nicotine oxidase, NctB, catalyzed the oxidation of 6-hydroxy-nornicotine to 6-hydroxy-myosmine, and it spontaneously hydrolyzed into 6-hydroxy-pseudooxy-nornicotine. However, 6-hydroxy-pseudooxy-nornicotine could not be further degraded by strain HZN7. This study demonstrated that nornicotine is partially transformed by strain HZN7 via nicotine degradation pathway.  相似文献   

16.
17.
The D- and L-specific nicotine oxidases are flavoproteins involved in the oxidative degradation of nicotine by the Gram-positive soil bacterium Arthrobacter nicotinovorans. Their structural genes are located on a 160-kbp plasmid together with those of other nicotine-degrading enzymes. They are structurally unrelated at the DNA as well as at the protein level. Each of these oxidases possesses a high degree of substrate specificity; their catalytic stereoselectivity is absolute, although they are able to bind both enantiomeric substrates with a similar affinity. It appears that the existence of these enzymes is the result of convergent evolution. The amino acid sequence of 6-hydroxy-l-nicotine oxidase (EC 1.5.3.6) as derived from the respective structural gene shows considerable structural similarity with eukaryotic monoamine oxidases (EC 1.4.3.4) but not with monoamine oxidases from prokaryotic bacteria including those of the genus Arthrobacter. These similarities are not confined to the nucleotide-binding sites. A 100-amino acid stretch at the N-terminal regions of 6-hydroxy-l-nicotine oxidase and human monoamine oxidases A possess a 35% homology. Overall, 27.0, 26.9, and 25.8% of the amino acid positions of the monoamine oxidases of Aspergillus niger (N), humans (A), and rainbow trout (Salmo gairdneri) are identical to those of 6-hydroxy-l-nicotine oxidase (Smith–Waterman algorithm). In addition, the G+C content of the latter enzyme is in the range of that of eukaryotic monoamine oxidases and definitely lower than that of the A. nicotinovorans DNA and even that of the pAO1 DNA. The primary structure of 6-hydroxy-d-nicotine oxidase (EC 1.5.3.5) does not reveal its evolutionary history as easily. Significant similarities are found with a mitomycin radical oxidase from Streptomyces lavendulae (23.3%) and a ``hypothetical protein' from Mycobacterium tuberculosis (26.0%). It is proposed that the plasmid-encoded gene of 6-hydroxy-l-nicotine oxidase evolved after horizontal transfer from an eukaryotic source. Received: 6 March 1998 / Accepted: 15 July 1998  相似文献   

18.
The induction by d,l-nicotine of the enantiozymes 6-hydroxy-L-nicotine oxidase and 6-hydroxy-D-nicotine oxidase in Archrobacter oxidans was differently affected by the inhibitors of Escherichia coli gyrase, novobiocin and nalidixic acid. These compounds inhibited 6-hydroxy-L-nicotine oxidase induction slightly, but led to an increase in the level of 6-hydroxy-D-nicotine oxidase activity. Furthermore, the specific repression by glucose of 6-hydroxy-D-nicotine oxidase synthesis was not abolished by the addition of cAMP but by that of novobiocin.Abbreviations 6-HDNO 6-hydroxy-D-nicotine oxidase - 6-HLNO 6-hydroxy-L-nicotine oxidase - cAMP cyclic 3,5-adenosine monophosphate - Enzymes Adenylate cyclase - ATP pyrophosphate-lyase (cyclizing) (EC 4.6.1.1) - cAMP-phosphodiesterase 3:5-cyclic-nucleotide 5-nucleotido-hydrolase (EC 3.1.4.17) - DNA gyrase DNA topoisomerase II (EC 5.99) - DNA polymerase deoxynucleosidetriphosphate: DNA desoxynucleotidyl-transferase (EC 2.7.7.7) - 6-hydroxy-L-nicotine oxidase 6-hydroxy-L-nicotine: oxygen oxidoreductase (EC 1.5.3.5) - 6-hydroxy-D-nicotine oxidase 6-hydroxy-D-nicotine: oxygen oxidoreductase (EC 1.5.3.6) - -lactamase penicillin amido--lactamhydrolase (EC 3.5.2.6) - nicotine dehydrogenase nicotine: (acceptor)6-oxidoreductase (hydroxylating) (EC 1.5.99.4)  相似文献   

19.
A bacterial strain 5HP capable of degrading and utilizing 5-hydroxypicolinic acid as the sole source of carbon and energy was isolated from soil. In addition, the isolate 5HP could also utilize 3-hydroxypyridine and 3-cyanopyridine as well as nicotinic, benzoic and p-hydroxybenzoic acids for growth in the basic salt media. On the basis of 16S rRNA gene sequence analysis, the isolate 5HP was shown to belong to the genus Pusillimonas. Both the bioconversion analysis using resting cells and the enzymatic assay showed that the degradation of 5-hydroxypicolinic acid, 3-hydroxypyridine and nicotinic acid was inducible and proceeded via formation of the same metabolite, 2,5-dihydroxypyridine. The activity of a novel enzyme, 5-hydroxypicolinate 2-monooxygenase, was detected in the cell-free extracts prepared from 5-hydroxypicolinate-grown cells. The enzyme was partially purified and was shown to catalyze the oxidative decarboxylation of 5-hydroxypicolinate to 2,5-dihydroxypyridine. The activity of 5-hydroxypicolinate 2-monooxygenase was dependent on O2, NADH and FAD.  相似文献   

20.
In the search for useful and renewable chemical building blocks, 5-hydroxymethylfurfural (HMF) has emerged as a very promising candidate, as it can be prepared from sugars. HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), which is used as a substitute for petroleum-based terephthalate in polymer production. On the basis of a recently identified bacterial degradation pathway for HMF, candidate genes responsible for selective HMF oxidation have been identified. Heterologous expression of a protein from Methylovorus sp. strain MP688 in Escherichia coli and subsequent enzyme characterization showed that the respective gene indeed encodes an efficient HMF oxidase (HMFO). HMFO is a flavin adenine dinucleotide-containing oxidase and belongs to the glucose-methanol-choline-type flavoprotein oxidase family. Intriguingly, the activity of HMFO is not restricted to HMF, as it is active with a wide range of aromatic primary alcohols and aldehydes. The enzyme was shown to be relatively thermostable and active over a broad pH range. This makes HMFO a promising oxidative biocatalyst that can be used for the production of FDCA from HMF, a reaction involving both alcohol and aldehyde oxidations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号