首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies have shown that polyunsaturated fatty acids (PUFA) regulated the functions of membrane receptors in T cells and suppressed T cell-mediated immune responses. But the molecular mechanisms of immune regulation are not yet elucidated. Lipid rafts are plasma membrane microdomains, in which many receptors localized. The purpose of this study was to investigate the effect of DHA on IL-2R signaling pathway in lipid rafts. We isolated lipid rafts by discontinuous sucrose density gradient ultracentrifugation, and found that DHA could change the composition of lipid rafts and alter the distribution of key molecules of IL-2R signaling pathway, which transferred from lipid rafts to detergent-soluble membrane fractions. These results revealed that DHA treatment increased the proportion of polyunsaturated fatty acids especially n−3 polyunsaturated fatty acids in lipid rafts and changed the lipid environment of membrane microdomains in T cells. Compared with controls, DHA changed the localization of IL-2R, STAT5a and STAT5b in lipid rafts and suppressed the expression of JAK1, JAK3 and tyrosine phosphotyrosine in soluble membrane fractions. Summarily, this study concluded the effects of DHA on IL-2R signaling pathway in lipid rafts and explained the regulation of PUFAs in T cell-mediated immune responses.  相似文献   

3.
PUFAs have been shown to mediate immune re-sponse especially the functions of T cells[1]. Recent researches have demonstrated that PUFAs can in-crease membrane fluidity and modify the functions of membrane receptors and enzymes in T cell membra-ne[2,3]. M…  相似文献   

4.
Various epidemiological studies show a positive correlation between high intake of dietary FAs and metastatic prostate cancer (CaP). Moreover, CaP metastasizes to the bone marrow, which harbors a rich source of lipids stored within adipocytes. Here, we use Fourier transform infrared (FTIR) microspectroscopy to study adipocyte biochemistry and to demonstrate that PC-3 cells uptake isotopically labeled FA [deuterated palmitic acid (D(31)-PA)] from an adipocyte. Using this vibrational spectroscopic technique, we detected subcellular locations in a single adipocyte enriched with D(31)-PA using the upsilon(as+s)(C-D)(2+3) (D(31)-PA): upsilon(as+s)(C-H)(2+3) (lipid hydrocarbon) signal. In addition, larger adipocytes were found to consist of a higher percentage of D(31)-PA of the total lipid found within the adipocyte. Following background subtraction, the upsilon(as)(C-D)(2+3) signal illuminated starved PC-3 cells cocultured with D(31)-PA-loaded adipocytes, indicating translocation of the labeled FA. This study demonstrates lipid-specific translocation between adipocytes and tumor cells and the use of FTIR microspectroscopy to characterize various biomolecular features of a single adipocyte without the requirement for cell isolation and lipid extraction.  相似文献   

5.
There is evidence that B cells from patients with Systemic Lupus Erythematosus (SLE) could be hyperactivated due to changes in their lipid rafts (LR) composition, leading to altered BCR-dependent signals. This study aimed to characterize possible alterations in the recruitment of protein tyrosine kinases (PTK) into B cells LR from SLE patients. Fifteen patients with SLE and ten healthy controls were included. Circulating B cells were isolated by negative selection and stimulated with goat Fab´2 anti-human IgM/IgG. LR were isolated with a non-ionic detergent and ultracentrifuged on 5–45% discontinuous sucrose gradients. Proteins from each fraction were analyzed by Western Blot. Total levels of Lyn, Syk, and ZAP-70 in resting B cells were similar in SLE patients and healthy controls. Upon BCR activation, Lyn, Syk and ZAP-70 recruitment into LR increased significantly in B cells of healthy controls and patients with inactive SLE. In contrast, in active SLE patients there was a great heterogeneity in the recruitment of signaling molecules and the recruitment of ZAP-70 was mainly observed in patients with decreased Syk recruitment into LR of activated B cells. The reduction in Flotilin-1 and Lyn recruitment in SLE patients seem to be associated with disease activity. These findings suggest that in SLE patients the PTK recruitment into B cell LR is dysregulated and that B cells are under constant activation through BCR signaling. The decrease of Lyn and Syk, the expression of ZAP-70 by B cells and the increase in Calcium fluxes in response to BCR stimulation in active SLE patients, further support that B cells from SLE patients are under constant activation through BCR signaling, as has been proposed.  相似文献   

6.
7.
Store-operated Ca2+ entry (SOCE) is a mechanism regulated by the filling state of the intracellular Ca2+ stores that requires the participation of the Ca2+ sensor STIM1, which communicates the Ca2+ content of the stores to the plasma membrane Ca2+-permeable channels. We have recently reported that Orai1 mediates the communication between STIM1 and the Ca2+ channel hTRPC1. This event is important to confer hTRPC1 store depletion sensitivity, thus supporting the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of SOCE. Here we have explored the relevance of lipid rafts in the formation of the STIM1-Orai1-hTRPC1 complex and the activation of SOCE. Disturbance of lipid raft domains, using methyl-beta-cyclodextrin, reduces the interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 upon depletion of the intracellular Ca2+ stores and attenuates thapsigargin-evoked Ca2+ entry. These findings suggest that TRPC1, Orai1 and STIM1 form a heteromultimer associated with lipid raft domains and regulated by the intracellular Ca2+ stores.  相似文献   

8.
Store-operated Ca2+ entry (SOCE) is a mechanism regulated by the filling state of the intracellular Ca2+ stores that requires the participation of the Ca2+ sensor STIM1, which communicates the Ca2+ content of the stores to the plasma membrane Ca2+-permeable channels. We have recently reported that Orai1 mediates the communication between STIM1 and the Ca2+ channel hTRPC1. This event is important to confer hTRPC1 store depletion sensitivity, thus supporting the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of SOCE. Here we have explored the relevance of lipid rafts in the formation of the STIM1-Orai1-hTRPC1 complex and the activation of SOCE. Disturbance of lipid raft domains, using methyl-β-cyclodextrin, reduces the interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 upon depletion of the intracellular Ca2+ stores and attenuates thapsigargin-evoked Ca2+ entry. These findings suggest that TRPC1, Orai1 and STIM1 form a heteromultimer associated with lipid raft domains and regulated by the intracellular Ca2+ stores.  相似文献   

9.
Chronic exposure of skeletal muscle to saturated fatty acids, such as palmitate (C16:0), enhances proinflammatory IKK-NFκB signaling by a mechanism involving the MAP kinase (Raf-MEK-ERK) pathway. Raf activation can be induced by its dissociation from the Raf-kinase inhibitor protein (RKIP) by diacylglycerol (DAG)-sensitive protein kinase C (PKC). However, whether these molecules mediate the proinflammatory action of palmitate, an important precursor for DAG synthesis, is currently unknown. Here, involvement of DAG-sensitive PKCs, RKIP, and the structurally related monounsaturated fatty acid palmitoleate (C16:1) on proinflammatory signaling are investigated. Palmitate, but not palmitoleate, induced phosphorylation/activation of the MEK-ERK-IKK axis and proinflammatory cytokine (IL-6, CINC-1) expression. Palmitate increased intramyocellular DAG and invoked PKC-dependent RKIPSer153 phosphorylation, resulting in RKIP-Raf1 dissociation and MEK-ERK signaling. These responses were mimicked by PMA, a DAG mimetic and PKC activator. However, while pharmacological inhibition of PKC suppressed PMA-induced activation of MEK-ERK-IKK signaling, activation by palmitate was upheld, suggesting that DAG-sensitive PKC and RKIP were dispensable for palmitate''s proinflammatory action. Strikingly, the proinflammatory effect of palmitate was potently repressed by palmitoleate. This repression was not due to reduced palmitate uptake but linked to increased neutral lipid storage and enhanced cellular oxidative capacity brought about by palmitoleate''s ability to restrain palmitate-induced mitochondrial dysfunction.  相似文献   

10.
Reproduction in C. elegans relies on continuously proliferating germ cells which, during germline development, exit mitosis, undergo meiosis and differentiate into gametes. Supplementing the diet of C. elegans with dihommogamma-linolenic acid (20:3n-6, DGLA), a long chain omega-6 polyunsaturated fatty acid, results in sterile worms that lack germ cells. The effect is remarkably specific for DGLA, as eicosapentaenoic acid (20:5n-3, EPA) and other long-chain polyunsaturated fatty acids with similar physical properties have little or no effect on fertility. Germ cells undergoing mitosis during larval stages are especially sensitive to DGLA, but exposure to DGLA during adulthood also reduces germ cells and brood size, in part by inducing inappropriate apoptosis of meiotic germ cells. Mutant strains with defects in fatty acid desaturation and elongation display altered susceptibility to DGLA, indicating that the sterility effect of the dietary lipid depends on the amount of DGLA present in membranes as well as on the capacity to convert DGLA to other fatty acids. We propose that DGLA produces a signal that interacts with one or more pathways regulating germ cell survival. Our DGLA findings are the first report of a role for a specific fatty acid affecting the development and maintenance of germ cells in C. elegans.  相似文献   

11.
12.
Summary During germination and subsequent growth of fatty seeds, higher plants obtain energy from the glyconeogenic pathway in which fatty acids are converted to succinate in glyoxysomes, which contain enzymes for fatty acid -oxidation and the glyoxylate cycle. TheArabidopsis thaliana ped1 gene encodes a 3-ketoacyl-CoA thiolase (EC 2.3.1.16) involved in fatty acid -oxidation. Theped1 mutant shows normal germination and seedling growth under white light. However, etiolated cotyledons of theped1 mutant grow poorly in the dark and have small cotyledons. To elucidate the mechanisms of lipid degradation during germination in theped1 mutant, we examined the morphology of theped1 mutant. The glyoxysomes in etiolated cotyledons of theped1 mutant appeared abnormal, having tubular structures that contained many vesicles. Electron microscopic analysis revealed that the tubular structures in glyoxysomes are derived from invagination of the glyoxysomal membrane. By immunoelectron microscopic analysis, acyl-CoA synthetase (EC 6.2.1.3), which was located on the membrane of glyoxysomes in wild-type plants, was located on the membranes of the tubular structures in the glyoxysomes in theped1 mutant. These invagination sites were always in contact with lipid bodies. The tubular structure had many vesicles containing substances with the same electron density as those in the lipid bodies. From these results, we propose a model in which there is a direct mechanism of transporting lipids from the lipid bodies to glyoxysomes during fatty acid -oxidation.  相似文献   

13.
Lipids of brain tissue and brain microvascular endothelial cells contain high proportions of long-chain polyunsaturated fatty acids (long PUFAs). The blood-brain barrier (BBB) is formed by the brain endothelial cells under the inductive influence of brain cells, especially perivascular glia, and coculture of endothelial cells and glial cells has been used to examine this induction. The objective of this study was to investigate whether C6 glioma cells are able to influence the lipid composition and shift the fatty acid (FA) patterns of the BBB model cell lines RBE4 and ECV304 toward the in vivo situation. Lipid classes of the three cell lines were analyzed by thin-layer chromatography and lipid FA patterns by high-performance liquid chromatography. Only ECV304 cells showed altered lipid composition in coculture with C6 cells. The fractions of triglycerides and cholesteryl esters (depending on the support filter) were about twice as high in coculture as when the cells were grown alone. Triglyceride fractions reached 13 to 15% of total lipids in coculture. The three cell lines showed an increase in the percentage of long PUFAs with respect to unsaturated FAs, mainly because of an increase in the percentages of arachidonic acid, all cis-7,10,13,16-docosatetraenoic acid, and all cis-7,10,13,16,19-docosapentaenoic acid. It is concluded that glioma C6 cells are able to induce a more in vivo-like FA pattern in BBB cell culture models. However, changes were not significant for the individual PUFAs, and their levels did not reach in vivo values.  相似文献   

14.
ABSTRACT

In contrast to stress-induced macroautophagy/autophagy that happens during nutrient deprivation and other environmental challenges, basal autophagy is thought to be an important mechanism that cells utilize for homeostatic purposes. For instance, basal autophagy is used to recycle damaged and malfunctioning organelles and proteins to provide the building blocks for the generation of new ones throughout life. In addition, specialized autophagic processes, such as lipophagy, the autophagy-induced breakdown of lipid droplets (LDs), and glycophagy (breakdown of glycogen), are employed to maintain proper energy levels in the cell. The importance of autophagy in the regulation of stem cell behavior has been the focus of recent studies. However, the upstream signals that control autophagic activity in stem cells and the precise role of autophagy in stem cells are only starting to be elucidated. In a recent publication, we described how the Egfr (epidermal growth factor receptor) pathway stimulates basal autophagy to support the maintenance of somatic cyst stem cells (CySCs) and to control lipid levels in the Drosophila testis.  相似文献   

15.
The Ebola fusion peptide (EBO16) is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO16 and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM), a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO16 to induce lipid mixing. On the other hand, EBO16 was structurally sensitive to interaction with lipid rafts (DRMs), but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO16. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO16 and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.  相似文献   

16.
目的 研究菌群代谢产物短链脂肪酸——丙酸、丁酸对人髓母细胞瘤UW228 3细胞增殖、凋亡和侵袭的影响。 方法 分别用10 μmol/L丙酸和5 μmol/L丁酸处理UW228 3细胞,通过HE染色观察细胞形态,MTT法测定细胞活力,流式细胞术检测细胞凋亡,细胞划痕检测细胞侵袭,PCR和Western Blot检测凋亡相关基因和蛋白的表达。 结果 10 μmol/L丙酸和5 μmol/L丁酸能够有效抑制UW228 3细胞增殖能力,增加细胞凋亡率,并显著抑制UW228 3细胞侵袭能力,提高Caspase 3基因以及蛋白表达,降低c Myc、Bcl 2、Survivin基因以及蛋白的表达。 结论 菌群代谢产物丙酸、丁酸能够抑制人髓母细胞瘤UW228 3细胞增殖和侵袭,并促进细胞凋亡,具有治疗髓母细胞瘤的潜在价值。  相似文献   

17.
Many late-stage cancer cells express Fas ligand (FasL) and show high malignancy with metastatic potential. We report here a novel signaling mechanism for FasL that hijacks the Met signal pathway to promote tumor metastasis. FasL-expressing human tumor cells express a significant amount of phosphorylated Met. The down-regulation of FasL in these cells led to decreased Met activity and reduced cell motility. Ectopic expression of human FasL in NIH3T3 cells significantly stimulated their migration and invasion. The inhibition of Met and Stat3 activities reverted the FasL-associated phenotype. Notably, FasL variants activated the Met pathway, even though most of their intracellular domain or Fas binding sites were deleted. FasL interacted with Met through the FasL(105-130) extracellular region in lipid rafts, which consequently led to Met activation. Knocking down Met gene expression by RNAi technology reverted the FasL-associated motility to basal levels. Furthermore, treatment with synthetic peptides corresponding to FasL(117-126) significantly reduced the FasL/Met interaction, Met phosphorylation, and cell motility of FasL(+) transfectants and tumor cells. Finally, the transfectants of truncated FasL showed strong anchorage-independent growth and lung metastasis potential in null mice. Collectively, our results establish the FasL-Met-Stat3 signaling pathway and explains the metastatic phenotype of FasL-expressing tumors.  相似文献   

18.
Rat neural stem cells/neural progenitors (NSC/NP) are generally grown in serum‐free medium. In this study, NSC/NP were supplemented with the main long‐chain polyunsaturated fatty acids (PUFAs) present in the brain, arachidonic acid (AA), or docosahexaenoic acid (DHA), and were monitored for their growth. Lipid and fatty acid contents of the cells were also determined. Under standard conditions, the cells were characterized by phospholipids displaying a highly saturated profile, and very low levels of PUFAs. When cultured in the presence of PUFAs, the cells easily incorporated them into the phospholipid fraction. We also compared the presence of three membrane proteins in the lipid raft fractions: GFR and connexin 43 contents in the rafts were increased by DHA supplementation, whereas Gβ subunit content was not significantly modified. The restoration of DHA levels in the phospholipids could profoundly affect protein localization and, consequently, their functionalities. J. Cell. Biochem. 110: 1356–1364, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
In plant, unusual fatty acids are produced by a limited number of species. The industrial benefits of these unusual structures have led several groups to study their production in transgenic plants. Their research results led to very modest accumulation in seeds which was largely due to a limited knowledge of the lipid metabolism and fatty acid transfer in plants. More specifically we need to better understand the substrate specificity and selectivity of acyltransferases which are required for the incorporation of these unusual fatty acids into storage triacylglycerols. In our studies we have compared the incorporation of [14C] Oleoyl-CoA and Branched Chain Acyls-CoA into [3H] LPA-C18:1 by the Lysophosphatidic acid Acyltransferase (LPAAT) from developing seeds of agronomic plants (flax (Linum usitatissimum) and rape (Brassica napus)) and from a plant capable of producing high amounts of hydroxy fatty acids (castor bean (Ricinus communis)). Our assays demonstrate that LPAATs of the three studied species (1) incorporated preferentially oleyl-CoA, (2) could incorporate cyclopropane acyl-CoA when added alone as a substrate, however very weakly for rapeseed and castor bean seeds, (3) presented a low capacity to incorporate methyl branched acyl-CoA when added alone as a substrate (4) weakly incorporated cyclopropane acyl-CoA and was unable to incorporate methyl branched acyl-CoA when presented with an equimolar mix of oleyl-CoA and branched chain acyl-CoA. In all cases, the LPAAT had a low affinity for branched chain acyl-CoAs. The results show that LPAAT activity from agronomic plants constitutes a bottleneck for the incorporation of branched Chain acyl-CoA into PA.  相似文献   

20.
High pressure liquid chromatography with a narrow bore C8 column has been used to separate pristanic, phytanic and very long chain fatty acids, important in the diagnosis of peroxisomal disorders, for their accurate isotope dilution quantification by tandem mass spectrometry. The fatty acids, isolated from plasma, were analysed as trimethylaminoethyl ester (quaternary ammonium) derivatives. Analysis time was 2.5 h and sample requirement was 10 microl of plasma. Good agreement with GC-MS methods for the levels of pristanic and phytanic acids, C26:0/C22:0 and C24:0/C22:0 ratios were obtained for 12 plasma samples from peroxisomal disorder patients and a set of controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号