首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several recent gene expression studies identified hundreds of genes that are correlated with age in brain and other tissues in human. However, these studies used linear models of age correlation, which are not well equipped to model abrupt changes associated with particular ages. We developed a computational algorithm for age estimation in which the expression of each gene is treated as a dichotomized biomarker for whether the subject is older or younger than a particular age. In addition, for each age-informative gene our algorithm identifies the age threshold with the most drastic change in expression level, which allows us to associate genes with particular age periods. Analysis of human aging brain expression datasets from three frontal cortex regions showed that different pathways undergo transitions at different ages, and the distribution of pathways and age thresholds varies across brain regions. Our study reveals age-correlated expression changes at particular age points and allows one to estimate the age of an individual with better accuracy than previously published methods.  相似文献   

2.
The assembly of 20,000 sequencing reads obtained from shotgun and chromosome-specific libraries of the Spiroplasma citri genome yielded 77 chromosomal contigs totaling 1,674 kbp (92%) of the 1,820-kbp chromosome. The largest chromosomal contigs were positioned on the physical and genetic maps constructed from pulsed-field gel electrophoresis and Southern blot hybridizations. Thirty-eight contigs were annotated, resulting in 1,908 predicted coding sequences (CDS) representing an overall coding density of only 74%. Cellular processes, cell metabolism, and structural-element CDS account for 29% of the coding capacity, CDS of external origin such as viruses and mobile elements account for 24% of the coding capacity, and CDS of unknown function account for 47% of the coding capacity. Among these, 21% of the CDS group into 63 paralog families. The organization of these paralogs into conserved blocks suggests that they represent potential mobile units. Phage-related sequences were particularly abundant and include plectrovirus SpV1 and SVGII3 and lambda-like SpV2 sequences. Sixty-nine copies of transposases belonging to four insertion sequence (IS) families (IS30, IS481, IS3, and ISNCY) were detected. Similarity analyses showed that 21% of chromosomal CDS were truncated compared to their bacterial orthologs. Transmembrane domains, including signal peptides, were predicted for 599 CDS, of which 58 were putative lipoproteins. S. citri has a Sec-dependent protein export pathway. Eighty-four CDS were assigned to transport, such as phosphoenolpyruvate phosphotransferase systems (PTS), the ATP binding cassette (ABC), and other transporters. Besides glycolytic and ATP synthesis pathways, it is noteworthy that S. citri possesses a nearly complete pathway for the biosynthesis of a terpenoid.Spiroplasmas are arthropod-associated bacteria belonging to the class Mollicutes, a group of wall-less microorganisms phylogenetically related to low-G+C-content, Gram-positive bacteria (51). Spiroplasma citri is a helical plant-pathogenic mollicute responsible for the “stubborn” disease of citrus (39). It inhabits the phloem sap of infected plants to which it is transmitted by sap-sucking hemipteran insect in a circulative and propagative manner (31, 32). S. citri can infect a wide range of plant species, including crop and wild plants, as it is transmitted by polyphagous leafhoppers (13). Spiroplasmas are available in pure culture, and their study has therefore benefited from the use of molecular genetics. In particular, the relationships of spiroplasmas with their two hosts, the plant and the leafhopper vector, have been extensively studied (11, 22). In S. citri, the inactivation of genes and functional complementation of mutants have shown that (i) fructose consumption by the spiroplasma is a major cause for symptom production in plants, (ii) the solute binding protein of a putative ABC-type transporter is involved in the insect transmission process, and (iii) spiralin, the major membrane protein, is not essential for helicity, motility, and pathogenicity but is required for efficient transmission by the leafhopper vector (10, 19, 23, 24, 28). To characterize other spiroplasma genes potentially involved in insect transmission and pathogenicity, the genome of S. citri strain GII3-3X is currently being deciphered.The S. citri genome is characterized by an abundance of extrachromosomal elements, including seven plasmids, pSciA and pSci1 to pSci6, present as 10 to 14 copies per cell. These plasmids are vertically inherited, but some of them could also be horizontally transferred, as they encode proteins involved in partitioning and the cell-to-cell transfer of DNA molecules (12, 40). Plasmids pSci1 to pSci5 encode surface proteins of the S. citri adhesion-related protein (ScARP) family, and pSci6 was previously shown to confer insect transmissibility (9). Therefore, it is likely that the abundance and diversity of plasmids could provide S. citri strain GII3-3X with the ability to quickly adapt to various vector insects and, hence, to be transmitted to diverse host plants. However, chromosome-encoded determinants are also expected to play a role in spiroplasma biology. In S. citri, the chromosome sizes vary from 1.6 to 1.9 Mbp among strains (53, 54), and part of the size variation is thought to result from different amounts of prophage sequences (35). Many S. citri strains are infected by single-stranded DNA-containing filamentous phages (Plectrovirus), whose sequences also occur as partial or full-length prophages integrated into the spiroplasma chromosome (7, 35, 38). Here we report the partial chromosome sequence of S. citri strain GII3-3X and the functional assignment of the predicted coding sequences.  相似文献   

3.
4.

Background

miRNAs are key players in gene expression regulation. To fully understand the complex nature of cellular differentiation or initiation and progression of disease, it is important to assess the expression patterns of as many miRNAs as possible. Thereby, identifying novel miRNAs is an essential prerequisite to make possible a comprehensive and coherent understanding of cellular biology.

Methodology/Principal Findings

Based on two extensive, but previously published, small RNA sequence datasets from human embryonic stem cells and human embroid bodies, respectively [1], we identified 112 novel miRNA-like structures and were able to validate miRNA processing in 12 out of 17 investigated cases. Several miRNA candidates were furthermore substantiated by including additional available small RNA datasets, thereby demonstrating the power of combining datasets to identify miRNAs that otherwise may be assigned as experimental noise.

Conclusions/Significance

Our analysis highlights that existing datasets are not yet exhaustedly studied and continuous re-analysis of the available data is important to uncover all features of small RNA sequencing.  相似文献   

5.
6.
《Developmental cell》2014,28(4):366-380
  1. Download : Download high-res image (226KB)
  2. Download : Download full-size image
  相似文献   

7.
Type-C RNA Virus Gene Expression in Human Tissue   总被引:17,自引:3,他引:14  
Partially purified fractions of human tissues have been analyzed by competition radioimmunoassay for the presence of two of the principle structural components of type-C RNA viruses, the major core protein (p27 to p30) and the major envelope glycopeptides (gp69/71). Screening of tissues was carried out by use of a heterologous assay system of (125)I-labeled Rauscher murine virus p30 antigen and anti-RD 114 virus serum which was found to detect a class of interspecies determinants common to murine, feline, and primate viruses. A competitor with the same apparent affinity for antibody binding as that of purified viral core proteins was found in relatively high concentration in tissues from patients with systemic lupus erythematosus, in some neoplastic tissues, and also in normal human tissues. This competitor from a lupus spleen chromatographed on phosphocellulose and showed size fractionation during gel filtration similar to known p27 to p30 viral proteins. An immunologically reactive protein was also demonstrated by immunodiffusion and by immunoprecipitation of (125)I-labeled human protein with anti-RD 114 p28 serum. Analysis of these human competitor proteins with homologous assay systems of viral core proteins and corresponding antisera showed that all, including the normal tissue extracts, appear similar to core proteins of known viruses, especially the RD 114 and woolly monkey species. A hypothesis suggested by these data is that many, if not all, humans harbor at least part of the genome of one or more type-C viruses, the properties of which are similar to those of viruses from other mammalian species, particularly primates.  相似文献   

8.

Background

Human brain aging has received special attention in part because of the elevated risks of neurodegenerative disorders such as Alzheimer''s disease in seniors. Recent technological advances enable us to investigate whether similar mechanisms underlie aging and neurodegeneration, by quantifying the similarities and differences in their genome-wide gene expression profiles.

Principal Findings

We have developed a computational method for assessing an individual''s “physiological brain age” by comparing global mRNA expression datasets across a range of normal human brain samples. Application of this method to brains samples from select regions in two diseases – Alzheimer''s disease (AD, superior frontal gyrus), frontotemporal lobar degeneration (FTLD, in rostral aspect of frontal cortex ∼BA10) – showed that while control cohorts exhibited no significant difference between physiological and chronological ages, FTLD and AD exhibited prematurely aged expression profiles.

Conclusions

This study establishes a quantitative scale for measuring premature aging in neurodegenerative disease cohorts, and it identifies specific physiological mechanisms common to aging and some forms of neurodegeneration. In addition, accelerated expression profiles associated with AD and FTLD suggest some common mechanisms underlying the risk of developing these diseases.  相似文献   

9.
10.
11.

Objective

In current clinical practice, optimal treatment of inflammatory bowel disease (IBD) aims at the induction and maintenance of clinical remission. Clinical remission is apparent when laboratory markers of inflammation are normal and clinical symptoms are absent. However, sub-clinical inflammation can still be present. A detailed analysis of the immune status during this inactive state of disease may provide a useful tool to categorize patients with clinical remission into subsets with variable states of immune activation.

Design

By using Affymetrix GeneChips, we analysed RNA gene expression profiles of peripheral blood leukocytes from pediatric IBD patients in clinical remission and controls. We performed (un)supervised clustering analysis of IBD-associated genes and applied Ingenuity® pathway software to identify specific molecular profiles between patients.

Results

Pediatric IBD patients with disease in clinical remission display heterogeneously distributed gene expression profiles that are significantly distinct from controls. We identified three clusters of IBD patients, each displaying specific expression profiles of IBD-associated genes.

Conclusion

The expression of immune- and IBD-associated genes in peripheral blood leukocytes from pediatric IBD patients in clinical remission was different from healthy controls, indicating that sub-clinical immune mechanisms are still active during remission. As such, RNA profiling of peripheral blood may allow for non-invasive patient subclassification and new perspectives in treatment regimes of IBD patients in the future.  相似文献   

12.
In the brain, the expression of 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of inflammatory leukotrienes, increases during aging. Antiinflammatory drugs are currently being evaluated for the treatment of aging-associated neurodegenerative diseases such as Alzheimer's disease. Although generally considered antiinflammatory, glucocorticoids, whose production also increases during aging, are not particularly effective in this disease. In human monocytes, 5-LO mRNA content increases on exposure to the synthetic glucocorticoid dexamethasone, which prompted us to hypothesize that glucocorticoids might increase 5-LO expression in the brain as well. We treated rats for 10 days either with corticosterone (implanted subcutaneously) or with dexamethasone (injected daily); they were killed on day 10 after pellet implantation or 24 h after the 10th dexamethasone injection. We found increased levels of 5-LO mRNA and protein in hippocampus and cerebellum of glucocorticoid-treated rats; 5-LO-activating protein (FLAP) mRNA content was not affected. Using western immunobloting, we also observed the concurrent translocation of 5-LO protein from cytosol to membrane, an indication of its activation. Thus, glucocorticoid-mediated up-regulation of the neuronal 5-LO pathway may contribute to rendering an aging brain vulnerable to degeneration.  相似文献   

13.
14.
15.
重组人脑乙酰胆碱酯酶的基因表达和生化毒理学性质   总被引:1,自引:0,他引:1  
人脑乙酰胆碱酯酶的全长cDNA序列克隆到真核高效表达载体pcDNA3.1中 ,并将pcDNA AChE转染人胚肾细胞株 2 93细胞 ,进行rhAChE的暂时表达 .真核细胞表达的rhAChE的生化性质与天然人脑AChE十分相似 .rhAChE的Km 值约为 137μmol L ;有过量底物抑制现象 ;可被胆碱酯酶抑制剂huperzineA和eserine抑制 (IC50 分别为 2 5× 10 -8mol L和 1 0× 10 -7mol L) ;肟类化合物HI 6 (10 -4 mol L)可以有效地重活化被sarin(10 -6mol L及 10 -7mol L)抑制的rhAChE ,4h内重活化率分别达 86 %和 97% .rhAChE反复冻融 3次 ,酶活性没有损失 .  相似文献   

16.
Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain.  相似文献   

17.
18.
Human adenoviruses (HAds) encode for one or two highly abundant virus-associated RNAs, designated VA RNAI and VA RNAII, which fold into stable hairpin structures resembling miRNA precursors. Here we show that the terminal stem of the VA RNAs originating from Ad4, Ad5, Ad11 and Ad37, all undergo Dicer dependent processing into virus-specific miRNAs (so-called mivaRNAs). We further show that the mivaRNA duplex is subjected to a highly asymmetric RISC loading with the 3′-strand from all VA RNAs being the favored strand, except for the Ad37 VA RNAII, where the 5′-mivaRNAII strand was preferentially assembled into RISC. Although the mivaRNA seed sequences are not fully conserved between the HAds a bioinformatics prediction approach suggests that a large fraction of the VA RNAII-, but not the VA RNAI-derived mivaRNAs still are able to target the same cellular genes. Using small RNA deep sequencing we demonstrate that the Dicer processing event in the terminal stem of the VA RNAs is not unique and generates 3′-mivaRNAs with a slight variation of the position of the 5′ terminal nucleotide in the RISC loaded guide strand. Also, we show that all analyzed VA RNAs, except Ad37 VA RNAI and Ad5 VA RNAII, utilize an alternative upstream A start site in addition to the classical +1 G start site. Further, the 5′-mivaRNAs with an A start appears to be preferentially incorporated into RISC. Although the majority of mivaRNA research has been done using Ad5 as the model system our analysis demonstrates that the mivaRNAs expressed in Ad11- and Ad37-infected cells are the most abundant mivaRNAs associated with Ago2-containing RISC. Collectively, our results show an unexpected variability in Dicer processing of the VA RNAs and a serotype-specific loading of mivaRNAs into Ago2-based RISC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号