首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
KAREN L. WIEBE  KATHY MARTIN 《Ibis》1998,140(1):14-24
Although many studies report a difference in reproductive success between old and young birds, little is known about how, why and when productivity changes as individuals age. We examined age-dependent reproduction in two bird species that inhabit harsh tundra environments: White-tailed Ptarmigan Lagopus leucurus in alpine areas and Willow Ptarmigan Lagopus lagopus in subarctic Canada. We evaluated reproductive performance in the light of three hypotheses: constraint, restraint and selection. Using cross-sectional and longitudinal data, we observed significant age effects in seven of the eight life history and behavioural traits examined for the two species. However, the pattern of age effects variedconsiderably across life history stages; younger birds generally had smaller clutches, later laying dates and poorer spring body condition, but the nesting success did not vary with age. Brood-rearing and renesting abilities were greater for older parents. The oldest age class of White-tailed Ptarmigan showed reproductive senescence for laying date and clutch size but fledged such a large proportion of the brood that they had the highest overall production of any class. It thus appears that parental experience can compensate for reduced physical ability to produce eggs. Annual mortality rates for breeding females were U-shaped for White-tailed Ptarmigan, with higher rates for young and old birds, but mortality did not change with age in Willow Ptarmigan. Overall, the two species differed in the presence of age dependence for only two traits (renesting ability and annual survival). Age-dependent effects were generally greater for White-tailed Ptarmigan than for Willow Ptarmigan. The patterns of mortality and fecundity we observed in ptarmigan provide general support for the constraint hypothesis of reproductive performance. By examining discrete stages of reproduction, we identified the life history stages where age effects occur and propose proximate mechanisms responsible for these effects.  相似文献   

3.
Habitat loss and climate change pose a double jeopardy for many threatened taxa, making the identification of optimal habitat for the future a conservation priority. Using a case study of the endangered Bornean orang‐utan, we identify environmental refuges by integrating bioclimatic models with projected deforestation and oil‐palm agriculture suitability from the 1950s to 2080s. We coupled a maximum entropy algorithm with information on habitat needs to predict suitable habitat for the present day and 1950s. We then projected to the 2020s, 2050s and 2080s in models incorporating only land‐cover change, climate change or both processes combined. For future climate, we incorporated projections from four model and emission scenario combinations. For future land cover, we developed spatial deforestation predictions from 10 years of satellite data. Refuges were delineated as suitable forested habitats identified by all models that were also unsuitable for oil palm – a major threat to tropical biodiversity. Our analyses indicate that in 2010 up to 260 000 km2 of Borneo was suitable habitat within the core orang‐utan range; an 18–24% reduction since the 1950s. Land‐cover models predicted further decline of 15–30% by the 2080s. Although habitat extent under future climate conditions varied among projections, there was majority consensus, particularly in north‐eastern and western regions. Across projections habitat loss due to climate change alone averaged 63% by 2080, but 74% when also considering land‐cover change. Refuge areas amounted to 2000–42 000 km2 depending on thresholds used, with 900–17 000 km2 outside the current species range. We demonstrate that efforts to halt deforestation could mediate some orang‐utan habitat loss, but further decline of the most suitable areas is to be expected given projected changes to climate. Protected refuge areas could therefore become increasingly important for ongoing translocation efforts. We present an approach to help identify such areas for highly threatened species given environmental changes expected this century.  相似文献   

4.
In the Alps tourism, land-use practices and climate change may cause a loss of suitable habitat of rock ptarmigan (Lagopus muta helvetica). Hence, there is a need for basic research on population densities and habitat requirements of this species as a basis for long-term monitoring studies. So far, in the Austrian Alps, no accurate data on densities and trends of rock ptarmigan populations are available. We carried out counts of calling cocks in the southeastern part of the Austrian Alps (Nockberge National Park, Carinthia, Austria) between 31 May and 1 July 2003 and evaluated the distribution of male rock ptarmigan territories. The spring density of 5.4 territorial cocks per square kilometre was similar to densities in the Swiss Alps but higher than spring population densities in the Italian Alps and the Pyrenees. To investigate summer habitat use, we established a grid mapping of habitat parameters and rock ptarmigan signs. In total, 38 squares with signs of rock ptarmigan presence were recorded (i.e. 32% of all recorded squares). The presence of rock ptarmigan was significantly correlated with cover of rock and rock ptarmigan preferred habitat patchiness. Our study provides a useful reference for future monitoring of this species in the alpine distribution range considering the potential decrease and fragmentation of alpine habitats resulting from climate change and human impacts.  相似文献   

5.
The warming climate will expose alpine species adapted to a highly seasonal, harsh environment to novel environmental conditions. A species can shift their distribution, acclimate, or adapt in response to a new climate. Alpine species have little suitable habitat to shift their distribution, and the limits of acclimation will likely be tested by climate change in the long-term. Adaptive genetic variation may provide the raw material for species to adapt to this changing environment. Here, we use a genomic approach to describe adaptive divergence in an alpine-obligate species, the white-tailed ptarmigan (Lagopus leucura), a species distributed from Alaska to New Mexico, across an environmentally variable geographic range. Previous work has identified genetic structure and morphological, behavioral, and physiological differences across the species’ range; however, those studies were unable to determine the degree to which adaptive divergence is correlated with local variation in environmental conditions. We used a genome-wide dataset generated from 95 white-tailed ptarmigan distributed throughout the species’ range and genotype–environment association analyses to identify the genetic signature and environmental drivers of local adaptation. We detected associations between multiple environmental gradients and candidate adaptive loci, suggesting ptarmigan populations may be locally adapted to the plant community composition, elevation, local climate, and to the seasonality of the environment. Overall, our results suggest there may be groups within the species’ range with genetic variation that could be essential for adapting to a changing climate and helpful in guiding conservation action.Subject terms: Ecological genetics, Evolutionary ecology  相似文献   

6.
The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in “future-proofing” conservation and biodiversity management.Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer). The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC) was evaluated.The performance of the Maxent model was rated as ‘good’ to ‘excellent’ on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of “most suitable”, “less suitable” and “unsuitable” habitat was calculated for the baseline year (2009) and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100). A loss of 100% of “most suitable” habitat was reported by 2080.Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible “conservation management tool”.  相似文献   

7.
According to classic theory, species'' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator–prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.  相似文献   

8.
One way that climate change will impact animal distributions is by altering habitat suitability and habitat fragmentation. Understanding the impacts of climate change on currently threatened species is of immediate importance because complex conservation planning will be required. Here, we mapped changes to the distribution, suitability, and fragmentation of giant panda habitat under climate change and quantified the direction and elevation of habitat shift and fragmentation patterns. These data were used to develop a series of new conservation strategies for the giant panda. Qinling Mountains, Shaanxi, China. Data from the most recent giant panda census, habitat factors, anthropogenic disturbance, climate variables, and climate predictions for the year 2050 (averaged across four general circulation models) were used to project giant panda habitat in Maxent. Differences in habitat patches were compared between now and 2050. While climate change will cause a 9.1% increase in suitable habitat and 9% reduction in subsuitable habitat by 2050, no significant net variation in the proportion of suitable and subsuitable habitat was found. However, a distinct climate change‐induced habitat shift of 11 km eastward by 2050 is predicted firstly. Climate change will reduce the fragmentation of suitable habitat at high elevations and exacerbate the fragmentation of subsuitable habitat below 1,900 m above sea level. Reduced fragmentation at higher elevations and worsening fragmentation at lower elevations have the potential to cause overcrowding of giant pandas at higher altitudes, further exacerbating habitat shortage in the central Qinling Mountains. The habitat shift to the east due to climate change may provide new areas for giant pandas but poses severe challenges for future conservation.  相似文献   

9.
Climate change is a grave danger for humans and a looming threat to Earth's biodiversity in the twenty-first century. Assessing the vulnerability of species to climate change is critical for practical conservation efforts. Due to their limited dispersal ability, amphibians are one of the most vulnerable groups of vertebrates to climate change. Among them, the species that inhabit mountains suffer a tremendous amount of climate change-induced pressures. We, therefore, adopted the Azerbaijan Mountain Newt (Neurergus crocatus), which currently inhabits Northwest Iran, North Iraq, and Southeast Turkey, as a case study for assessing the effects of climate change on the distribution patterns of mountain amphibians. By applying the species distribution models (SDMs) in this study, we tried to hindcast the species distribution area in the past and illustrate the impacts of climate change on its distribution in the present and future (the 2050s and 2070s) climate conditions. Also, the patch metrics have been deployed for identifying habitat fragmentation. Our results indicate a more than 50% rise in the species’ current suitable habitats compared to its glacial refugia. The suitable habitat is expected to gradually decrease in RCP 2.6 and RCP 8.5. Among the three countries in which the species occurs, its distribution overlaps with protected areas only in Iraq. The number of habitat patches will grow and reach approximately 20 to 60 patches by 2070 and the average area of the patches will decrease throughout this time. Aside from the numerous threats that endanger the species, climate change puts the long-term existence of Azerbaijan Newt in jeopardy. The results of this study stress the urgent need for taking extreme measures on the species management and conserving its remnant habitat patches.  相似文献   

10.
Shrubs have expanded in Arctic ecosystems over the past century, resulting in significant changes to albedo, ecosystem function, and plant community composition. Willow and rock ptarmigan (Lagopus lagopus, L. muta) and moose (Alces alces) extensively browse Arctic shrubs, and may influence their architecture, growth, and reproduction. Furthermore, these herbivores may alter forage plants in such a way as to increase the quantity and accessibility of their own food source. We estimated the effect of winter browsing by ptarmigan and moose on an abundant, early-successional willow (Salix alaxensis) in northern Alaska by comparing browsed to unbrowsed branches. Ptarmigan browsed 82–89% of willows and removed 30–39% of buds, depending on study area and year. Moose browsed 17–44% of willows and browsed 39–55% of shoots. Browsing inhibited apical dominance and activated axillary and adventitious buds to produce new vegetative shoots. Ptarmigan- and moose-browsed willow branches produced twice the volume of shoot growth but significantly fewer catkins the following summer compared with unbrowsed willow branches. Shoots on browsed willows were larger and produced 40–60% more buds compared to unbrowsed shoots. This process of shoot production at basal parts of the branch is the mechanism by which willows develop a highly complex “broomed” architecture after several years of browsing. Broomed willows were shorter and more likely to be re-browsed by ptarmigan, but not moose. Ptarmigan likely benefit from the greater quantity and accessibility of buds on previously browsed willows and may increase the carrying capacity of their own habitat. Despite the observed tolerance of willows to browsing, their vertical growth and reproduction were strongly inhibited by moose and ptarmigan. Browsing by these herbivores therefore needs to be considered in future models of shrub expansion in the Arctic.  相似文献   

11.
Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A) over three time intervals (2020, 2050, 2080). The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1) identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020–2050), representing assessment priorities for ex situ conservation; (2) identifies ‘core localities’ that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3) provides the location and characterization of target locations (populations) for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing plantations will be neagtively impacted by climate change.  相似文献   

12.
Rock and willow ptarmigan are abundant herbivores that require shrub habitats in arctic and alpine areas. Shrub expansion is likely to increase winter habitat availability for ptarmigan, which in turn influence shrub architecture and growth through browsing. Despite their ecological role in the Arctic, the distribution and movement patterns of ptarmigan are not well known, particularly in northern Alaska where shrub expansion is occurring. We used multi-season occupancy models to test whether ptarmigan occupancy varied within and among years, and the degree to which colonization and extinction probabilities were related to shrub cover and latitude. Aerial surveys were conducted from March to May in 2011 and April to May 2012 in a 21,230 km2 area in northeastern Alaska. In areas with at least 30 % shrub cover, the probability of colonization by ptarmigan was >0.90, indicating that moderate to extensive patches of shrubs (typically associated with riparian areas) had a high probability of becoming occupied by ptarmigan. Occupancy increased throughout the spring in both years, providing evidence that ptarmigan migrated from southern wintering areas to breeding areas north of the Brooks Range. Occupancy was higher in the moderate snow year than the high snow year, and this was likely due to higher shrub cover in the moderate snow year. Ptarmigan distribution and migration in the Arctic are linked to expanding shrub communities on a wide geographic scale, and these relationships may be shaping ptarmigan population dynamics, as well as rates and patterns of shrub expansion.  相似文献   

13.

Background

Climate change is increasingly being implicated in species'' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis.

Methods and Findings

The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species'' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species'' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an expansion of their potential range towards the north. Thus, leishmaniasis has the potential to expand northwards from México and the southern United States. In the eastern United States its spread is predicted to be limited by the range of L. diabolica; further west, L. anthophora may play the same role. In the east it may even reach the southern boundary of Canada. The risk of spread is greater for the A2 scenario than for the B2 scenario. Even in the latter case, with restrictive (contiguous) models for dispersal of vector and reservoir species, and limiting vector and reservoir species occupancy to only the top 10% of their potential suitable habitat, the expected number of human individuals exposed to leishmaniasis by 2080 will at least double its present value.

Conclusions

These models predict that climate change will exacerbate the ecological risk of human exposure to leishmaniasis in areas outside its present range in the United States and, possibly, in parts of southern Canada. This prediction suggests the adoption of measures such as surveillance for leishmaniasis north of Texas as disease cases spread northwards. Potential vector and reservoir control strategies—besides direct intervention in disease cases—should also be further investigated.  相似文献   

14.
According to the European Bird Directive (Council Directive 79/409/EEC of 2 April 1979 on the conservation of wild birds), particular efforts must be made to preserve the Rock Ptarmigan (Lagopus muta helvetica) and its habitats. Protection and management of this species require basic knowledge of the current status of each of its populations. Within the Austrian distribution range of Rock Ptarmigan, only two study sites from the inner parts of the Alps have been investigated and no data on the most eastern pre-alpine populations are available. In the present study, we conducted simultaneous counts of calling Rock Ptarmigan cocks and recorded calling activities. We calculated spring densities for alpine and pre-alpine study areas and compared them. Spring densities for different habitat types in one study area were observed and compared. Spring densities and calling activities differed between study sites, even within the most eastern border of distribution. Generally, spring densities seem to be higher in alpine habitats than in pre-alpine study sites. In one alpine study area, the highest spring densities were found for habitat patches with a heterogeneous mixture of rocky surface and dwarf pine.  相似文献   

15.
Expected consequences of global warming include habitat reduction in many cool climate species. Rock ptarmigan is a Holarctic grouse that inhabits arctic and alpine tundra. In Europe, the Pyrenean ptarmigan inhabits the southern edge of the species' range and since the last glacial maximum its habitat has been severely fragmented and is restricted to high-alpine zones or 'sky islands'. A recent study of rock ptarmigan population genetic in Europe found that the Pyrenean ptarmigan had very low genetic diversity compared with that found in the Alps and Scandinavia. Habitat fragmentation and reduced genetic diversity raises concerns about the viability of ptarmigan populations in the Pyrenees. However, information on population structuring and gene flow across the Pyrenees, which is essential for designing a sound management plan, is absent. In this study, we use seven microsatellites and mitochondrial control region sequences to investigate genetic variation and differentiation among five localities across the Pyrenees. Our analyses reveal the presence of genetic differentiation among all five localities and a significant isolation-by-distance effect that is likely the result of short dispersal distances and high natal and breeding philopatry of Pyrenean ptarmigan coupled with severe habitat fragmentation. Furthermore, analysis of molecular variance, principal component analysis and Bayesian analysis of genetic structuring identified the greatest amount of differentiation between the eastern and main parts of the Pyrenean chain separated by the Sègre Valley. Our data also show that the Canigou massif may host an isolated population and requires special conservation attention. We propose a management plan which includes the translocation of birds. If a sky island structure affects genetic divergence in rock ptarmigan, it may also affect the genetic structure of other sky island species having low dispersal abilities.  相似文献   

16.
Using a case study of an isolated management unit of Sichuan snub‐nosed monkey (Rhinopithecus roxellana), we assess the extent that climate change will impact the species’ habitat distribution in the current period and projected into the 2050s. We identify refugia that could maintain the population under climate change and determine dispersal paths for movement of the population to future suitable habitats. Hubei Province, China. We identified climate refugia and potential movements by integrating bioclimatic models with circuit theory and least‐cost model for the current period (1960–1990) and the 2050s (2041–2060). We coupled a maximum entropy algorithm to predict suitable habitat for the current and projected future periods. Suitable habitat areas that were identified during both time periods and that also satisfied home range and dispersal distance conditions were delineated as refugia. We mapped potential movements measured as current flow and linked current and future habitats using least‐cost corridors. Our results indicate up to 1,119 km2 of currently suitable habitat within the study range. Based on our projections, a habitat loss of 67.2% due to climate change may occur by the 2050s, resulting in a reduced suitable habitat area of 406 km2 and very little new habitat. The refugia areas amounted to 286 km2 and were located in Shennongjia National Park and Badong Natural Reserve. Several connecting corridors between the current and future habitats, which are important for potential movements, were identified. Our assessment of the species predicted a trajectory of habitat loss following anticipated future climate change. We believe conservation efforts should focus on refugia and corridors when planning for future species management. This study will assist conservationists in determining high‐priority regions for effective maintenance of the endangered population under climate change and will encourage increased habitat connectivity.  相似文献   

17.
Species distributions are influenced by climate and topography in alpine ecosystems, yet resource selection studies of alpine species are uncommon. Basic characteristics of habitats used by alpine-endemic white-tailed ptarmigan (Lagopus leucura) have been described to explain foraging behavior, morphology, and survival in many alpine regions; however, there is a lack of information about fine-scale habitat selection for nesting and brood-rearing, particularly in the southern extent of the species’ range. Few studies have tested whether nest and brood-site selection by white-tailed ptarmigan are influenced by fine-scale components such as vegetation and arthropod communities. We assessed these fine-scale habitat characteristics analyzing paired use-available resource selection for nest (n = 61) and brood (n = 54) sites. We used conditional logistic regression for data collected in 2 alpine areas along the Front Range of Colorado, USA, during 2014 and 2015. We evaluated resource selection at larger (patch) and finer (nest site) scales. Nest-site selection at the patch scale was best predicted by cover (%) of forage forbs, rock and gravel, and shrubs. Forage forb cover explained more variation in our top nest model at the patch scale when compared to models with specific vegetation species. Females placed their nests along elevational gradients but more so at lower elevations and selected for less graminoid cover at the nest-site scale. Brood habitat selection at the patch level was influenced by cover (%) of rock and gravel and proximity to shrubs (m). Analysis of a subset of our brood data (n = 34) revealed females selected brood habitat that contained high arthropod abundance (e.g., Cicadellidae) over high vegetation cover, likely as a response to meet dietary requirements of chicks. Our results demonstrate how and where white-tailed ptarmigan are currently selecting these different breeding sites in Colorado's alpine, giving us insight into consequences this alpine-endemic bird may face if their breeding habitat is altered. © 2019 The Wildlife Society.  相似文献   

18.
Climate change and invasive species are two of the most serious threats of biodiversity. A general concern is that these threats interact, and that a globally warming climate could favour invasive species. In this study we investigate the invasive potential of one of the “100 of the world’s worst invasive species”, the big-headed ant Pheidole megacephala. Using ecological niche models, we estimated the species’ potential suitable habitat in 2020, 2050 and 2080. With an ensemble forecast obtained from five different modelling techniques, 3 Global Circulation Models and 2 CO2 emission scenarios, we generated world maps with suitable climatic conditions and assessed changes, both qualitatively and quantitatively. Almost one-fifth (18.5 %) of the landmass currently presents suitable climatic conditions for P. megacephala. Surprisingly, our results also indicate that the invasion of big-headed ants is not only unlikely to benefit from climate change, but may even suffer from it. Our projections show a global decrease in the invasive potential of big-headed ants as early as 2020 and becoming even stronger by 2080 reaching a global loss of 19.4 % of area with favourable climate. The decrease is observable in all 6 broad regions, being greatest in the Oceania and lowest in Europe.  相似文献   

19.
Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing models (model uncertainty), and uncertainty in future climate conditions (climate uncertainty) to produce site‐specific frequency distributions of occurrence probabilities across a species' range. We illustrated the method by forecasting suitable habitat for bull trout (Salvelinus confluentus) in the Interior Columbia River Basin, USA, under recent and projected 2040s and 2080s climate conditions. The 95% interval of total suitable habitat under recent conditions was estimated at 30.1–42.5 thousand km; this was predicted to decline to 0.5–7.9 thousand km by the 2080s. Projections for the 2080s showed that the great majority of stream segments would be unsuitable with high certainty, regardless of the climate data set or bull trout model employed. The largest contributor to uncertainty in total suitable habitat was climate uncertainty, followed by parameter uncertainty and model uncertainty. Our approach makes it possible to calculate a full distribution of possible outcomes for a species, and permits ready graphical display of uncertainty for individual locations and of total habitat.  相似文献   

20.
Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator–prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy‐deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate‐only model shows that only 11.64% (17,190 km2) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km2 (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate‐only model. It is predicted that future climate may alter the predator–prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards – a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号