首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3′-to-5′ in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3′ ends and strain-specific alternative 3′ editing within 3′ UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs.  相似文献   

3.
In the mitochondria of trypanosomatids, the majority of mRNAs undergo massive uracil-insertion/deletion editing. Throughout the processes of pre-mRNA polyadenylation, guide RNA (gRNA) uridylylation and annealing to mRNA, and editing reactions, several multiprotein complexes must engage in transient interactions to produce a template for protein synthesis. Here, we report the identification of a protein complex essential for gRNA stability. The gRNA-binding complex (GRBC) interacts with gRNA processing, editing, and polyadenylation machineries and with the mitochondrial edited mRNA stability (MERS1) factor. RNAi knockdown of the core subunits, GRBC1 and GRBC2, led to the elimination of gRNAs, thus inhibiting mRNA editing. Inhibition of MERS1 expression selectively abrogated edited mRNAs. Homologous proteins unique to the order of Kinetoplastida, GRBC1 and GRBC2, form a stable 200 kDa particle that directly binds gRNAs. Systematic analysis of RNA-mediated and RNA-independent interactions involving the GRBC and MERS1 suggests a unified model for RNA processing in the kinetoplast mitochondria.  相似文献   

4.
Editing in trypanosomes involves the addition or deletion of uridines at specific sites to produce translatable mitochondrial mRNAs. RBP16 is an accessory factor from Trypanosoma brucei that affects mitochondrial RNA editing in vivo and also stimulates editing in vitro. We report here experiments aimed at elucidating the biochemical activities of RBP16 involved in modulating RNA editing. In vitro RNA annealing assays demonstrate that RBP16 significantly stimulates the annealing of gRNAs to cognate pre-mRNAs. In addition, RBP16 also facilitates hybridization of partially complementary RNAs unrelated to the editing process. The RNA annealing activity of RBP16 is independent of its high-affinity binding to gRNA oligo(U) tails, consistent with the previously reported in vitro editing stimulatory properties of the protein. In vivo studies expressing recombinant RBP16 in mutant Escherichia coli strains demonstrate that RBP16 is an RNA chaperone and that in addition to RNA annealing activity, it contains RNA unwinding activity. Our data suggest that the mechanism by which RBP16 facilitates RNA editing involves its capacity to modulate RNA secondary structure and promote gRNA/pre-mRNA annealing.  相似文献   

5.
One of the most striking examples of small RNA regulation of gene expression is the process of RNA editing in the mitochondria of trypanosomes. In these parasites, RNA editing involves extensive uridylate insertions and deletions within most of the mitochondrial messenger RNAs (mRNAs). Over 1200 small guide RNAs (gRNAs) are predicted to be responsible for directing the sequence changes that create start and stop codons, correct frameshifts and for many of the mRNAs generate most of the open reading frame. In addition, alternative editing creates the opportunity for unprecedented protein diversity. In Trypanosoma brucei, the vast majority of gRNAs are transcribed from minicircles, which are approximately one kilobase in size, and encode between three and four gRNAs. The large number (5000–10 000) and their concatenated structure make them difficult to sequence. To identify the complete set of gRNAs necessary for mRNA editing in T. brucei, we used Illumina deep sequencing of purified gRNAs from the procyclic stage. We report a near complete set of gRNAs needed to direct the editing of the mRNAs.  相似文献   

6.
During RNA editing in kinetoplastid parasites, trans-acting guide RNAs (gRNAs) direct the insertion and deletion of U residues at precise sites in mitochondrial pre-mRNAs. We show here that some modifications to the 3' terminal ribose of gRNA inhibit its ability to direct in vitro U insertion. However, we found that gRNAs lacking this moiety in some circumstances support in vitro editing. Thus, the 3' OH is not required. Inhibition resulting from gRNA modification can be overcome by increasing the gRNA-pre-mRNA base-pairing potential upstream of the editing site, suggesting an importance for this interaction to productive processing.  相似文献   

7.
8.
9.
10.
B Blum  N Bakalara  L Simpson 《Cell》1990,60(2):189-198
A class of small RNA molecules possibly involved in RNA editing is present in the mitochondrion of Leishmania tarentolae. These "guide" RNA (gRNA) molecules are encoded in intergenic regions of the mitochondrial maxicircle DNA and contain sequences that represent precise complementary versions of the mature mRNAs within the edited regions. In addition, the 5' portions of several gRNAs can form hybrids with mRNAs just 3' of the preedited region. A model is presented in which a partial hybrid formed between the gRNA and preedited mRNA is substrate for multiple cycles of cleavage, addition or deletion of uridylates, and religation, eventually resulting in a complete hybrid between the gRNA and the mature edited mRNA.  相似文献   

11.
12.
Although the mitochondrial uridine insertion/deletion, guide RNA (gRNA)-mediated type of RNA editing has been described in Crithidia fasciculata, no evidence for the encoding of gRNAs in the kinetoplast minicircle DNA has been presented. There has also been a question as to the capacity of the minicircle DNA in this species to encode the required variety of gRNAs, because the kinetoplast DNA from the C1 strain has been reported as essentially containing a single minicircle sequence class. To address this problem, the genomic and mature edited sequences of the MURF4 and RPS12 cryptogenes were determined and a gRNA library was constructed from mitochondrial RNA. Five specific gRNAs were identified, two of which edit blocks within the MURF4 mRNA, and three of which edit blocks within the RPS12 mRNA. The genes for these gRNAs are all localized with identical polarity within one of the two variable regions of specific minicircle molecules, approximately 60 bp from the "bend" region. These minicircles were found to represent minor sequence classes representing approximately 2% of the minicircle DNA population in the network. The major minicircle sequence class also encodes a gRNA at the same relative genomic location, but the editing role of this gRNA was not determined. These results confirm that kinetoplast minicircle DNA molecules in this species encode gRNAs, as is the case in other trypanosomatids, and suggest that the copy number of specific minicircle sequence classes can vary dramatically without an overall effect on the RNA editing system.  相似文献   

13.
14.
T. brucei survival relies on the expression of mitochondrial genes, most of which require RNA editing to become translatable. In trypanosomes, RNA editing involves the insertion and deletion of uridylates, a developmentally regulated process directed by guide RNAs (gRNAs) and catalyzed by the editosome, a complex of proteins. The pathway for mRNA/gRNA complex formation and assembly with the editosome is still unknown. Work from our laboratory has suggested that distinct mRNA/gRNA complexes anneal to form a conserved core structure that may be important for editosome assembly. The secondary structure for the apocytochrome b (CYb) pair has been previously determined and is consistant with our model of a three-helical structure. Here, we used cross-linking and solution structure probing experiments to determine the structure of the ATPase subunit 6 (A6) mRNA hybridized to its cognate gA6-14 gRNA in different stages of editing. Our results indicate that both unedited and partially edited A6/gA6-14 pairs fold into a three-helical structure similar to the previously characterized CYb/gCYb-558 pair. These results lead us to conclude that at least two mRNA/gRNA pairs with distinct editing sites and distinct primary sequences fold to a three-helical secondary configuration that persists through the first few editing events.  相似文献   

15.
We have determined the relative steady state concentration of the two Crithidia fasciculata guide (g)RNAs involved in editing the two domains of mRNAs for NADH dehydrogenase (ND) subunit 7. We found that, although there was an 8-fold difference between the molar ratio of these two gRNAs relative to the (pre)-mRNA, the two domains are edited with a very similar frequency (around 50%). Also, for the editing of a given domain, many gRNA species exist with the same 5' end but with a different 3' uridylation site. Approximately 20% of these short gRNAs do not contain the information required for editing a complete domain, which may explain the high incidence of partially edited RNAs. Remarkably, genomically encoded Us are missing from two sites of a few of the gRNAs involved in editing apocytochrome b RNA. We speculate that these species are created by editing-like events. Both the short and complete forms of the ND7 gRNAs are found in chimeric molecules, in which the gRNA is covalently linked via its 3'-terminus to an editing site of pre-edited ND7 RNA. Some features of the chimeric molecules are at odds with current models of RNA editing: (i) U residues are completely absent from the connecting sequence of a number of these molecules, (ii) the ND7 gRNAs are frequently hooked up to the wrong editing domain of ND7 RNA, although other gRNAs are not found at these positions and (iii) in some chimeric molecules the gRNA appears to be linked to the 5' end of pre-edited RNA.  相似文献   

16.
17.
RNA editing in protozoan parasites is a mitochondrial RNA processing reaction in which exclusively uridylate residues are inserted into, and less frequently deleted from, pre-mRNAs. Molecules central to the process are so-called guide RNAs (gRNAs) which function as templates in the reaction. For a detailed molecular understanding of the mechanism of the editing process knowledge of structural features of gRNAs will be essential. Here we report on a computer-assisted molecular modelling approach to construct the first three-dimensional gRNA model for gND7-506, a ND7-specific gRNA from Trypanosoma brucei. The modelling process relied on chemical modification and enzymatic probing data and was validated by in vitro mutagenesis experiments. The model predicts a reasonably compact structure, where two stem/loop secondary structure elements are brought into close proximity by a triple A tertiary interaction, forming a core element within the centre of the molecule. The model further suggests that the surface of the gRNA is primarily made up of the sugar-phoshate backbone. On the basis of the model, footprinting experiments of gND7-506 in a complex with the gRNA binding protein gBP21 could successfully be interpreted and provide a first picture for the assembly of gRNAs within a ribonucleoprotein complex.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号