共查询到20条相似文献,搜索用时 15 毫秒
1.
Adam Roff Mitchell Lyons Hugh Jones Jillian Thonell 《Ecological Management & Restoration》2016,17(2):124-127
Map validation data that are ambiguously allocated to map units and collected via poorly designed sampling methods are not statistically reliable and will misrepresent map quality. A recent paper published in Ecological Management and Restoration (Ecological Management & Restoration, 17, 2016 and 40) reported that a map in south‐eastern Australia provided little or no predictive accuracy based on new field data, but the validation suffered from the aforementioned pitfalls. In this comment, we outline the basic guidelines for a robust, reliable and transparent accuracy assessment of thematic maps, pointing out where (Ecological Management & Restoration, 17, 2016 and 40) fails to meets these guidelines. 相似文献
2.
Roff et al. (Ecological Management and Restoration, 17 , 2016, 000) provide a discussion of the criteria expected for the best approach to validation of mapping programs and uses Hunter (Ecological Management & Restoration 17 , 2016, 40) to highlight issues involved. While we support the general principles outlined, we note that the review does not apply the same standards to Sivertsen et al. (Greater Hunter Native Vegetation Mapping Geodatabase Guide (Version 4.0). Office of Environment and Heritage, Department of the Premier and Cabinet, Sydney, Australia, 2011), the original document critiqued by Hunter (Ecological Management & Restoration 17 , 2016, 40). The Hunter (Ecological Management & Restoration 17 , 2016, 40) validation was based on a larger sample size, greater sampling within mapping units and greater representation of landscapes than Sivertsen et al. (Greater Hunter Native Vegetation Mapping Geodatabase Guide (Version 4.0). Office of Environment and Heritage, Department of the Premier and Cabinet, Sydney, Australia, 2011). Survey and validation sites being placed along public roads and lands are common to both the general Office of Environment and Heritage (OEH) and Hunter (Ecological Management & Restoration 17 , 2016, 40) validation methodologies. Thus, the criticisms of Roff et al. (Ecological Management and Restoration, 17 , 2016, 000) of the Hunter (Ecological Management & Restoration 17 , 2016, 40) approach apply equally, if not more, to Sivertsen et al. (Greater Hunter Native Vegetation Mapping Geodatabase Guide (Version 4.0). Office of Environment and Heritage, Department of the Premier and Cabinet, Sydney, Australia, 2011). We outline in the article how the Roff et al. (Ecological Management and Restoration, 17 , 2016, 000) critique was selective and in some cases incorrect in its analysis of issues presented in Hunter (Ecological Management & Restoration 17 , 2016, 40) and did not apply the same criteria to their own work. We conclude by discussing future directions for validating and mapping vegetation communities. 相似文献
3.
4.
Zdeňka Lososová Lubomír Tichý Jan Divíšek Natálie Čeplová Jiří Danihelka Pavel Dřevojan Karel Fajmon Veronika Kalníková Veronika Kalusová Pavel Novák Vladimír Řehořek Tamás Wirth Milan Chytrý 《Diversity & distributions》2018,24(6):765-775
Aim
Urban floras are composed of species of different origin, both native and alien, and with various traits and niches. It is likely that these species will respond to the ongoing climate change in different ways, resulting in future species compositions with no analogues in current European cities. Our goal was to estimate potential shifts in plant species composition in European cities under different scenarios of climate change for the 21st century.Location
Europe.Methods
Potential changes in the distribution of 375 species currently growing in 60 large cities in Southern, Central and Western Europe were modelled using generalized linear models and four climate change projections for two future periods (2041–2060 and 2061–2080). These projections were based on two global climate models (CCSM4 and MIROC‐ESM) and two Representative Concentration Pathways (2.6 and 8.5).Results
Results were similar across all climate projections, suggesting that the composition of urban plant communities will change considerably due to future climate change. However, even under the most severe climate change scenario, native and alien species will respond to climate change similarly. Many currently established species will decline and others, especially annuals currently restricted to Southern Europe, will spread to northern cities. In contrast, perennial herbs, woody plants and most species with temperate continental and oceanic distribution ranges will make up a smaller proportion of future European urban plant communities in comparison with the present communities.Main conclusions
The projected 21st century climate change will lead to considerable changes in the species composition of urban floras. These changes will affect the structure and functioning of urban plant communities.5.
6.
Aim To assess at a broad scale the vulnerability of Mediterranean vegetation to alien plant invasion under different climatic and disturbance scenarios. Location We simulated the vegetation biogeography and dynamics on five of the main islands of the Mediterranean Basin: Mallorca, Corsica, Sardinia, Crete and Lesvos. Methods We used LPJ‐GUESS, a generalized ecosystem model based on dynamic processes describing establishment, competition, mortality and ecosystem biogeochemistry. We simulated the vegetation distribution and dynamics using a set of plant functional types (PFTs) based on bioclimatic and physiological parameters, which included tree and shrub PFTs defined especially for the Mediterranean. Additionally, two invasive PFTs, an invasive tree type and an invasive herb type, were defined and used to estimate the vulnerability to invasion of a range of different ecosystems. The model was used to simulate climate changes and associated changes in atmospheric [CO2] to 2050 according to two SpecialReport on Emissions Scenarios climate scenarios (A1Fi and B1) combined with mean disturbance intervals of 3 and 40 years. Results The simulations and scenarios showed that the effect of climate change alone is likely to be negligible in many of the simulated ecosystems, although not all. The simulated progression of an invasion was highly dependent on the initial ecosystem composition and local environmental conditions, with a particular contrast between drier and wetter parts of the Mediterranean, and between mountain and coastal areas. The rate of ecosystem disturbance was the main factor controlling susceptibility to invasion, strongly influencing vegetation development on the shorter time scale. Main conclusions Further invasion into Mediterranean island ecosystems is likely to be an increasing problem: our simulations predict that, in the longer term, almost all the ecosystems will be dominated by exotic plants irrespective of disturbance rates. 相似文献
7.
采用样带调查与TWINSPAN分类等方法,对陕北丘陵沟壑区延安、安塞和吴旗174个撂荒地样方的物种组成、出现频率与盖度、及群落类型进行了统计与分类.植被组成结构的统计结果表明:该区自然恢复的植被几乎一半是由禾本科、菊科、豆科和蔷薇科的物种组成,北温带、旧世界温带、世界与泛热带分布成分占到总物种数近75%,且以中旱生、中生和旱生的草本类植物为主,具有典型的温带地面芽植物气候特征.植被的数量分类表明:调查样方基本包括了该区自然恢复的主要植被类型,延安、安塞和吴旗的植被在1年生草本群落到多年生蒿禾类草本群落阶段,依次均以猪毛蒿(Artemisia scoparia)、赖草(Leymus secalinus)、长芒草(Stipa bungeana)、达乌里胡枝子(Lespedeza davurica)、铁杆蒿(Artemisia gmelinii)、茭蒿(Artemisia giraldii)、白羊草(Bothriochloa ischaemun)等为主要优势物种构成的不同组合的植物群落,且这些物种具有较高的盖度和频度;但在植被演替后期,不同植被带及阴阳坡的演替方向却发生了明显的变化.以延安为代表的森林带,阴坡可形成黄刺玫(Rosa xanthina)、三角槭(Acer buergerianum)、辽东栎(Quercus liaotungensis)等为优势种的群落,阳坡可形成狼牙刺(Sophora viciifolia)、侧柏(Platycladus orientalis)等为优势种的群落;以安塞为代表的森林草原带,阴坡可形成黄刺玫、紫丁香(Syringa julianae)、虎榛子(Ostryopsis davidiana)等为优势种的群落,阳坡可形成白羊草(Bothriochloa ischaemun)、狼牙刺等为优势种的群落;而以吴旗为代表的草原带,阴阳坡植被分异不明显,为多年生蒿禾类草本群落.这些演替后期的灌乔优势物种均为高位芽植物,在阴坡为中生,在阳坡为旱生、中旱生,虽具有比较高的盖度,但分布仅仅是零散出现,并不是目前黄土丘陵沟壑区的主要植被类型. 相似文献
8.
Christelle Hély Laurent Bremond Samuel Alleaume Benjamin Smith Martin T. Sykes Joël Guiot 《Global Ecology and Biogeography》2006,15(3):258-270
Aim Africa is identified by the Inter‐governmental Panel on Climate Change (IPCC) as the least studied continent in terms of ecosystem dynamics and climate variability. The aim of this study was (1) to adapt the Lund‐Postdam‐Jena‐GUESS (LPJ‐GUESS) ecological modelling framework to Africa by providing new parameter values for tropical plant functional types (PFT), and (2) to assess the sensitivity of some African biomes to changes in precipitation regime. Location The study area was a representative transect (0–22° N and 7–18° E) through the transition from equatorial evergreen forests to savannas, steppes and desert northwards. The transect showed large latitudinal variation in precipitation (mean rainfall ranged from 50 to 2300 mm year?1). Methods New PFT parameters used to calibrate LPJ‐GUESS were based on modern pollen PFTs and remote sensed leaf area index (LAI). The model was validated using independent modern pollen assemblages, LAI and through comparison with White's modern potential vegetation map. Several scenarios were developed by combining changes in total rainfall amount with variation in the length of the dry season in order to test the sensitivity of African biomes. Results Simulated vegetation compared well to observed data at local and regional scales, in terms of ecosystem functioning (LAI), and composition (pollen and White's vegetation map). The assessment of the sensitivity of biomes to changes in precipitation showed that none of the ecosystems would shift towards a new type under the range of precipitation increases suggested by the IPCC (increases from 5 to 20%). However, deciduous and semi‐deciduous forests may be very sensitive to small reductions in both the amount and seasonality of precipitation. Main conclusions This version of LPJ‐GUESS parameterized for Africa simulated correctly the vegetation present over a wide precipitation gradient. The biome sensitivity assessment showed that, compared with savannas and grasslands, closed canopy forests may be more sensitive to change in precipitation regime due to the synergetic effects of changed rainfall amounts and seasonality on vegetation functioning. 相似文献
9.
10.
Space remote sensing for spatial vegetation characterization 总被引:1,自引:0,他引:1
The study area, Madhav National Park (MP) represents northern tropical dry deciduous forest. The national park, due to its
unique location (nearest to township), is under tremendous biotic pressure. In order to understand vegetation structure and
dynamics, vegetation mapping at community level was considered important. Prolonged leafless period and background reflection
due to open canopy poses challenge in interpretation of satellite data. The vegetation of Madhav National Park was mapped
using Landsat TM data. The ground data collected from sample points were subjected to TWINSPAN analysis to cluster sample
point data into six communities. The vegetation classification obtained by interpretation (visual and digital) of remote sensing
data and TWINSPAN were compared to validate the vegetation classification at community level. The phytosociological data collected
from sample points were analysed to characterize communities. The results indicate that structural variations in the communities
modulate spectral signatures of vegetation and form basis to describe community structure subjectively and at spatial level. 相似文献
11.
P. E. Tarasov V. S. Volkova T. Webb III J. Guiot A. A. Andreev L. G. Bezusko T. V. Bezusko G. V. Bykova N. I. Dorofeyuk E. V. Kvavadze I. M. Osipova N. K. Panova D. V. Sevastyanov 《Journal of Biogeography》2000,27(3):609-620
Pollen and plant macrofossil data from northern Eurasia were used to reconstruct the vegetation of the last glacial maximum (LGM: 18,000 ± 2000 14C yr bp ) using an objective quantitative method for interpreting pollen data in terms of the biomes they represent ( Prentice et al., 1996 ). The results confirm previous qualitative vegetation reconstructions at the LGM but provide a more comprehensive analysis of the data. Tundra dominated a large area of northern Eurasia (north of 57°N) to the west, south and east of the Scandinavian ice sheet at the LGM. Steppe‐like vegetation was reconstructed in the latitudinal band from western Ukraine, where temperate deciduous forests grow today, to western Siberia, where taiga and cold deciduous forests grow today. The reconstruction shows that steppe graded into tundra in Siberia, which is not the case today. Taiga grew on the northern coast of the Sea of Azov, about 1500 km south of its present limit in European Russia. In contrast, taiga was reconstructed only slightly south of its southern limit today in south‐western Siberia. Broadleaved trees were confined to small refuges, e.g. on the eastern coast of the Black Sea, where cool mixed forest was reconstructed from the LGM data. Cool conifer forests in western Georgia were reconstructed as growing more than 1000 m lower than they grow today. The few scattered sites with LGM data from the Tien‐Shan Mountains and from northern Mongolia yielded biome reconstructions of steppe and taiga, which are the biomes growing there today. 相似文献
12.
13.
Alessandro Chiarucci Miguel B. Araújo Guillaume Decocq Carl Beierkuhnlein José María Fernández‐Palacios 《植被学杂志》2010,21(6):1172-1178
We discuss the usefulness of the concept of Potential Natural Vegetation (PNV), which describes the expected state of mature vegetation in the absence of human intervention. We argue that it is impossible to model PNV because of (i) the methodological problems associated to its definition and (ii) the issues related to the ecosystems dynamics.We conclude that the approach to characterizing PNV is unrealistic and provides scenarios with limited predictive power. In places with a long‐term human history, interpretations of PNV need to be very cautious, and explicit acknowledgement made of the limitations inherent in available data. 相似文献
14.
Aim To develop a new method for bioclimate mapping where the vegetation layer is the main source of climate information. Location The study area includes four subareas, all situated on the Varangerhalvøya peninsula in Finnmark, north‐easternmost Norway (70–71° N). The four subareas were chosen to represent most of the climatic, topographic, geomorphologic and botanic diversity along the arctic–boreal gradient in the area. The four meteorological stations in the area show a climatic gradient with mean July temperature ranging from 10.1 to 12.3 °C. Methods The new vegetation‐based method is based on the fact that most plant species and plant communities both in the Arctic and adjacent areas have a distribution pattern limited by temperature to some extent. The vegetation is mapped using Landsat TM data and a contextual correction process in a geographic information system. The mapped vegetation units are defined as temperature indicators based on their total distribution patterns and the temperature indicator value of their high frequency and dominant species. The indicator value and degree of cover of all thermophilous vegetation units, within each 500 × 500 m study unit, are combined in a Vegetation‐based Index of Thermophily, VItm. This new vegetation‐based method is based on the same basic idea as a recently published floristic‐based method for calculating a Floristic‐based Index of Thermophily, FItm. The VItm values are tested by comparison with the FItm values, and temperature data collected in the field during two growing seasons, and the differences are interpreted ecologically. Results Twenty‐one of the mapped vegetation units were defined as thermophilous and categorized in five groups of temperature indicators. The VItm values showed a strong positive linear relationship with the temperatures measured during the years 2001 and 2002, with r2 values of 0.79 and 0.85, respectively. The VItm values show a high linear relationship (r2 = 0.76) with the 71 study units where the FItm values were calculated. As interpreted from the relationship with temperature measurements and FItm values, the vegetation‐based method seems to work at a broad range of ecological conditions, with very dry, acidic sites being the most important exception. The VItm values are related to growing degree‐days of a normal year, and the four subareas are mapped, showing a diversity of 13 bioclimatic classes. The birch forest line is estimated to occur at about 980 °C‐days. The results show climatic gradients with temperatures increasing from the cold coast towards the interior, from wind‐exposed convex hills towards wind‐protected valleys, and from mountain plateaux towards south‐facing lowlands. The north‐easternmost study site at the coast is positioned within the arctic shrub tundra zone. Main conclusions The vegetation‐based method shows a strong positive correlation both with measured temperatures and the floristic‐based method within a broad range of different ecological conditions. The vegetation‐based method has the potential for bioclimatic mapping of large areas in a cost‐effective way. The floristic‐based method has higher accuracy and is more flexible than the vegetation‐based method, and the two methods seem to complement each other. 相似文献
15.
通过对纸房沟流域不同植被恢复区昆虫进行调查,结果表明:昆虫种类数以天然灌木林最高,混交林次之,单纯林分较低,个体数量以柠条林昆虫数量最高,其次为混交林和沙棘林,天然灌木林变化幅度最小。各植被昆虫种类和数量季节变化符合y=ax3 bx2 cx d函数变化规律。从特征指数来分析:昆虫群落多样性指数5~9月份大小次序均为天然灌木林>混交林>单纯林分,均匀度以单纯林和混交林的昆虫群落变化幅度较大,天然灌木林变化幅度最小。群落的优势度与均匀度值的变化呈相反趋势。主分量分析表明:植物类型不同的昆虫群落,其主导因素和时间格局不同,且结构越复杂,主导因素和时间格局越明显;相反,则主导因素和时间格局分化不明显;通过排序植食性昆虫、捕食性昆虫、寄生性昆虫在各植被昆虫群落变化的不同时期占主导因素。 相似文献
16.
A. García‐Arias F. Francs M. Morales‐de la Cruz J. Real F. Valls‐Morn V. Garfano‐Gmez F. Martínez‐Capel 《Ecohydrology》2014,7(2):659-677
Biotic and abiotic interactions between the riparian zone and the river determine relevant hydrological processes and exert control over riparian and bordering upland vegetation types. Vegetation growth and development are mainly controlled by water availability on semi‐arid regions, where a moisture gradient determines the transition between the densely vegetated riparian zone and the semi‐arid upland. To reproduce this spatial distribution, a mathematical model named RibAV is presented. Its conceptualization is based on the main ecohydrological modelling approaches and field expertise. The implementation of RibAV that is proposed in this paper allows the simulation of the distribution of three plant functional types [herbaceous riparian vegetation (HRV), woody riparian vegetation (WRV) and terrestrial vegetation (TV)] within the riparian zone. An evapotranspiration index (Eidx) obtained through RibAV is used as a criterion for plant absence/presence prediction. Two permanent river reaches of semi‐arid Mediterranean basins, the Terde reach (Mijares River, Spain) and the Lorcha reach (Serpis River, Spain), have been selected as case studies for the calibration and validation of the model, respectively. Several criteria based on the confusion matrix were used to analyse the efficiency of RibAV on the prediction of plant distribution. The satisfactory performance of the model establishing the distribution of the riparian vegetation types and the limit between this zone and the bordering upland are demonstrated in this paper; the strength of the Eidx to classify plant functional types in riparian semi‐arid environments is additionally proven. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
17.
雅砻江和大渡河干旱河谷植被物种多样性比较:气候、地形与空间的影响 总被引:2,自引:0,他引:2
干旱河谷植被是我国西南横断山区的一类特殊的隐域性生态系统, 影响不同河谷之间植物群落差异的因素与作用大小尚不清楚。本研究调查了四川省雅砻江和大渡河流域干旱河谷段植被组成, 并比较了两个地区在植物多样性上的差别。结果表明: (1)影响两个地区植被类型的主要因素不同, 雅砻江干旱河谷植被主要受海拔和地形(坡度和坡向)影响, 大渡河干旱河谷植被主要受年平均降水量影响。(2)雅砻江和大渡河干旱河谷植物物种丰富度均随着年均温升高而降低。(3)坡向由北至南, 雅砻江干旱河谷灌木、草本物种丰富度减小, 而大渡河干旱河谷灌木、草本丰富度增加。(4)坡度越大, 雅砻江和大渡河干旱河谷灌木的丰富度越高。(5)雅砻江、大渡河干旱河谷植物β多样性受环境距离影响大, 受地理距离影响小。两条江植被间地理隔离效应约为地理距离产生差异的5倍。本研究弥补了干旱河谷研究中对于雅砻江和大渡河干旱河谷植物多样性研究的空白, 为相关区域植被保护提供了参考信息, 同时还为定量估计地理隔离效应对区域间生物多样性差异的影响提供了可行方法。 相似文献
18.
19.
Ahmadreza Mehrabian ;Alireza Naqinezhad ;Abdolrassoul Salman Mahiny ;HosseinMostafavi ;Homan Liaghati ;Mohsen Kouchekzadeh 《Acta Botanica Sinica》2009,(3):251-260
Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced. 相似文献
20.
孟玉芳;王发国;邢福武;戴建阅 《植物研究》2011,31(5):610-617
香港瓮缸群岛共有维管植物166种,隶属于69个科138个属,其中蕨类植物7科8属10种,裸子植物2科2属2种,被子植物60科128属154种。瓮缸群岛为香港著名离岛,植被生境无人为干扰,野生植物资源利用度较低,本文通过对瓮缸群岛的植被类型和野生植物资源进行统计分析,结果表明,该群岛可供利用的植物资源共10类,分别为:药用植物103种、观赏植物107种、食用植物21种、牧草及饲用植物23种、材用植物17种、油脂植物22种、芳香精油植物25种、纤维植物13种、鞣料植物11种、有毒植物26种等,都有很高的开发利用潜力,在此基础上提出相应的保育及开发利用建议,旨在更好地保护和合理利用该群岛的野生植物资源。 相似文献