首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Serum, but not epidermal growth factor (EGF), stimulated the release of radiolabeled inositol phosphates from human embryo palate mesenchyme (HEPM) cells prelabeled with [3H]-myoinositol. Pretreatment of cells with 10(-6) M dexamethasone (DEX) for 48 h had no effect on the release of inositol phosphates in response to serum. Furthermore, although treatment of the glucocorticoid-sensitive A/J strain of mouse embryo palate mesenchyme (MEPM) cells with 10(-6) M DEX inhibited their proliferation by 40%, it had no effect on the activity of phospholipase(s) C. However, DEX did enhance the incorporation of [3H]-myoinositol into membrane lipids. We interpret these data to mean that 1) serum factors enhance metabolism of inositol lipids in HEPM cells, 2) DEX does not interfere with the primary events by which agonists utilize metabolism of inositol lipids as a mechanism for transmembrane signaling, and 3) DEX may affect synthesis of phosphoinositides, as reported by Grove et al. (Biochem. Biophys. Res. Commun. 110:200-207, 1983; J. Craniofac. Genet. Dev. Biol. Suppl. 2:285-292, 1986).  相似文献   

2.
Treatment of primary cultures of palate mesenchyme cells from AJAX strain embryos with dexamethasone inhibited only phospholipase activity expressed at pH 7.5. A similar treatment did not have such an effect on palate mesenchyme cells from C57BL/6J strain embryos. Since the AJAX strain embryo is sensitive to the induction of cleft palate by exogenous glucocorticoids and the C57BL/6J strain is less so, these data allow consideration of phospholipase activity as a site of regulation for development of the palate.  相似文献   

3.
Epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA) stimulated mouse embryo palate mesenchyme (MEPM) cells to incorporate [32P]O(3-)4 into a protein with an apparent molecular weight of 80 kDa, in vitro. Agents known to elevate intracellular levels of cyclic AMP did not stimulate phosphorylation of this phosphoprotein. Since there is a significant amount of evidence obtained with other cells indicating that phosphorylation of such an 80-kDa phosphoprotein reflects specifically the activation of protein kinase C in response to PMA and other agents, including mitogens, these findings raise the possibility that EGF may activate protein kinase C in MEPM cells.  相似文献   

4.
The bridging of IgE receptors on rat basophilic leukemia cells (RBL-2H3) results in a number of biochemical events that accompany histamine secretion. Prominent among these is the release of arachidonic acid from cellular phospholipids, which could be due to the activation of phospholipase enzymes. In the present experiments we studied the intracellular activation of phospholipase A2 (PLA2) during histamine release. RBL-2H3 cells were stimulated through the IgE receptor, and the homogenates were prepared and tested for phospholipase A2 activity on 1-stearoyl-2-[14C]arachidonyl-sn-3-phosphatidylcholine. The amount of activity in the homogenates was dependent on the concentration of secretagogue used to activate the cells. Under optimal conditions there was a 1.86 +/- 0.12-fold (mean +/- SEM, N = 44) increase in the activity found in homogenates of stimulated cells. Activity was present in homogenates prepared 30 sec after cell activation, was optimal between 5 and 10 min, and decreased later. In time course experiments the PLA2 activation preceded histamine release. The activation of the enzyme in the cell occurred in the presence of 10 microM EGTA in the extracellular medium, which completely inhibited release of arachidonic acid and histamine. However, the activity of the enzyme required Ca2+. The PLA2 activity in the homogenates and the extent of cell stimulation for histamine release were maximal at the same concentration of antigen, and both were blocked by the addition of a monovalent hapten. The enzyme in the homogenates was capable of cleaving arachidonic acid from different phospholipids. The production of lysophospholipids could play a critical role in histamine release from cells. These results demonstrate the activation of PLA2 enzyme in cellular homogenates during the secretory process.  相似文献   

5.
Epidermal growth factor (EGF) stimulated mouse embryo palate mesenchyme (MEPM) cells (1) to incorporate [32P]O4(3-) into phosphatidylinositol (PI), phosphatidylcholine, and phosphatidic acid over a period of 60 min; 2) to incorporate [32P]O4(3-) into polyphosphoinositides as a function of time; and 3) to incorporate [32P]O4(-3) into PI, only, as a function of concentration when the period of stimulation was kept short. EGF stimulated the release of radiolabeled inositol phosphates from MEPM cells that had been radiolabeled with [3H]myoinositol. The release of inositol 1-phosphate was sustained over a period of at least 60 min, whereas the release of inositol 1,4-bisphosphate and inositol trisphosphate peaked during the first 10 min of stimulation. EGF also stimulated phosphorylation of an Mr 80,000 protein whose pI, phosphopeptide map, and phosphoamino acid pattern were identical to those of an Mr 80,000 protein phosphorylated in response to phorbol 12-myristate 13-acetate. Mobilization or metabolism of arachidonic acid was not stimulated under the same conditions that permitted EGF to alter inositol lipid metabolism. We interpret these data to mean that 1) in contrast to the findings with some cell lines, alterations in inositol lipid metabolism may be part of the signalling mechanism for EGF in embryonic cells; 2) EGF is capable of activating inositol-dependent signalling pathways leading to activation of protein kinase C in MEPM cells; and 3) mobilization and metabolism of arachidonic acid are not an inherent part of this signalling mechanism.  相似文献   

6.
The involvement of endogenous diacylglycerol production in the stimulation of phosphatidylcholine synthesis by exogenous phospholipase C was examined using a neuroblastoma (LA-N-2) cell line. Phospholipase C treatment (0.1 unit/ml) of intact cells stimulated CTP:phosphocholine cytidylyltransferase activity significantly more effectively than did maximally effective concentrations of the synthetic diacylglycerol sn-1,2-dioctanoylglycerol (1 mM). When added to cells together with phospholipase C, oleic acid, but not dioctanoylglycerol, further increased cytidylyltransferase activity with respect to phospholipase C treatment alone, indicating that the enzyme was not maximally activated by the lipase. This suggests that the lack of additivity of diacylglycerol and phospholipase C reflects a common mechanism of action. The time course of activation of cytidylyltransferase by phospholipase C paralleled that of [3H]diacylglycerol production in cells prelabeled for 24 h with [3H]oleic acid. Diacylglycerol mass was similarly increased. Significant elevations of [3H]oleic acid and total fatty acids occurred later than did the increases in cytidylyltransferase activity and diacylglycerol levels. No significant reduction in total or [3H]phosphatidylcholine was elicited by this concentration of phospholipase C, but higher concentrations (0.5 unit/ml) significantly reduced phosphatidylcholine content. The stimulation of cytidylyltransferase activity by phospholipase C or dioctanoylglycerol was also associated with enhanced incorporation of [methyl-14C]choline into phosphatidylcholine. Dioctanoylglycerol was more effective than phospholipase C at stimulating the formation of [14C]phosphatidylcholine, and the effects of the two treatments were additive. However, further analysis revealed that dioctanoylglycerol served as a precursor for [14C]dioctanoylphosphatidylcholine as well as an activator of cytidylyltransferase; and when corrections were made for this effect, the apparent additivity disappeared. The results indicate that the generation of diacylglycerol by exogenous phospholipase C (and possibly the subsequent production of fatty acids via diacylglycerol metabolism) activates cytidylyltransferase activity in neuronal cells under conditions in which membrane phosphatidylcholine content is not measurably reduced.  相似文献   

7.
The metabolism of phosphatidylcholine (PC) was investigated in sonicated suspensions of bovine pulmonary artery endothelial cells and in subcellular fractions using two PC substrates: 1-oleoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho[14C]choline. When these substrates were incubated with the whole cell sonicate at pH 7.5, all of the metabolized 3H label was recovered in [3H]oleic acid (95%) and [3H]diacylglycerol (5%). All of the 14C label was identified in [14C]lysoPC (92%) and [14C]phosphocholine (8%). These data indicated that PC was metabolized via phospholipase(s) A and phospholipase C. Substantial diacylglycerol lipase activity was identified in the cell sonicate. Production of similar proportions of diacylglycerol and phosphocholine and the low relative activity of phospholipase C compared to phospholipase A indicated that the phospholipase C-diacylglycerol lipase pathway contributed little to fatty acid release from the sn-2 position of PC. Neither phospholipase A nor phospholipase C required Ca2+. The pH profiles and subcellular fractionation experiments indicated the presence of multiple forms of phospholipase A, but phospholipase C activity displayed a single pH optimum at 7.5 and was located exclusively in the particulate fraction. The two enzyme activities demonstrated differential sensitivities to inhibition by p-bromophenacylbromide, phenylmethanesulfonyl fluoride and quinacrine. Each of these agents inhibited phospholipase A, whereas phospholipase C was inhibited only by p-bromophenacylbromide. The unique characteristics observed for phospholipase C activity towards PC indicated the existence of a novel enzyme that may play an important role in lipid metabolism in endothelial cells.  相似文献   

8.
Rat embryo fibroblasts (REF52 cells) and the simian virus 40 transformed derivative (WT6 Ag6) were employed to characterize phospholipase D (PLD) activity in normal and transformed cells. In cells prelabeled with [3H]myristic acid or [3H]glycerol and treated with 12-O-tetradecanoylphorbol-13-acetate (TPA, 50 ng/ml medium) or vasopressin (VP, 100 ng/ml medium) in the presence of ethanol, the formation of labeled phosphatidylethanol (PEt) was 3- to 5-fold higher in REF52 cells than in the transformed cells. The transphosphatidylation of phosphatidylcholine (PC) to PEt was further examined in cell-free assay systems. Results demonstrated that the formation of PEt in the cell-free assays was dependent on the mode of substrate presentation and the source of the PC. With endogenous membrane-bound substrate, the formation of [3H]myristoyl-PEt was 5-fold higher in homogenates derived from normal cells as compared to transformed cell homogenates. In experiments using exogenous labeled PC isolated from either REF52 or transformed cells as substrate, cell-free PLD activity differed greatly with regard to the source of the PC. The formation of PEt from REF52-derived PC was approx. 4-fold higher as compared to PEt formed with PC derived from the transformed cells, irrespective of enzyme source. The results demonstrate that PLD in intact nontransformed fibroblasts is activatable by TPA and VP to a greater extent than in the transformed counterpart. The results from cell-free assays suggest that PLD activity is more dependent on the type of PC substrate than on the source of the enzyme.  相似文献   

9.
The hydrolysis of phosphatidylcholine (PC) associated with low-density lipoprotein (LDL) by homogenates of smooth muscle cells from rabbit aorta was studied. 1-Palmitoyl-2-[14C]oleoylPC associated with LDL (LDL-P[14C]OPC) or 1-linoleoyl-2-[14C]linoleoylPC associated with LDL (LDL-L[14C]LPC) was used as the substrate. The optimum pH for the formation of [14C]oleoyllysoPC from LDL-P[14C]OPC and for the formation of [14C]linoleoyllysoPC from LDL-L[14C]LPC was pH 4.5, and pH 4.5 and 7.0, respectively. These activities were designated as phospholipase A1 activities. The optimum pH values for the formation of [14C]oleate from LDL-L[14C]OPC and for the formation of [14C]linoleate from LDL-L[14C]LPC were pH 4.5 and 6.5, and pH 4.5, 6.5 and 8.5, respectively. These activities were designated as phospholipase A2 activities. Ca2+ did not affect acid phospholipase A1 activity, but decreased acid phospholipase A2 activity for the hydrolysis of LDL-L[14C]LPC. When smooth muscle cells were incubated with LDL, both phospholipase A1 and phospholipase A2 activities at pH 4.5 for the hydrolysis of LDL-L[14C]LPC increased significantly. These results indicate that phospholipases A1 and A2, which hydrolyze PC associated with LDL, exist in arterial smooth muscle cells and are involved in the metabolism of LDL incorporated into these cells.  相似文献   

10.
High-performance liquid chromatography and radioimmunoassay were used to identify the prostaglandins synthesized by mouse embryo palate mesenchyme cells. Serum stimulated the release of several different metabolites of arachidonic acid including 6-ketoprostaglandin F1 alpha (the stable product of prostacyclin, prostaglandin I2), prostaglandin E2 and prostaglandin F2 alpha. Compared to control cells, the serum-stimulated cells produce elevated levels of prostaglandin E2 (36-fold), 6-ketoprostaglandin F1 alpha (15-fold) and prostaglandin F2 alpha (7-fold). The acetylenic analogue of arachidonic acid, 5,8,11,14-eicosatetraynoic acid prevented this accelerated synthesis.  相似文献   

11.
T W Martin  D Lagunoff 《Biochemistry》1982,21(6):1254-1260
The presence of phospholipase A2 in intact rat peritoneal mast cells was investigated by using two synthetic radiolabeled phosphatidylserine (PS) substrates. Incubation of intact cells with 1-oleoyl-2-[3H]oleoyl-PS resulted in the release of a considerable quantity of [3H]oleic acid from the substrate. To establish that [3H]oleic acid release was mediated via direct enzymatic attack at the sn-2 position, we measured release of the [3H]serine moiety from the glycerol backbone of 1,2-dimyristoylphosphatidyl[3H]serine. This activity, which represents the combined actions of phospholipases C and D, was 10-fold lower than [3H]oleic acid release, indicating that neither of these enzymes is required for the release of the preponderance of [3H]oleic acid. These results establish the existence in intact rat mast cells of a phospholipase A2 active toward exogenous PS. Over the concentration range at which exogenous PS activates mast cell secretion, intact mast cells and broken cells possessed nearly equal levels of phospholipase A2 activity, and enzyme activity was 3--4-fold higher toward PS than phosphatidylcholine. Several agents were tested for their ability to inhibit phospholipase A2 in intact mast cells. Of the agents tested, an N-substituted derivative of PS previously identified as an inhibitor of mast cell secretion was shown to be a particularly potent and efficacious inhibitor of mast cell phospholipase A2. The concentration dependence of enzyme inhibition paralleled inhibition of histamine secretion, providing a strong positive correlation between the level of phospholipase A2 in mast cells and the capacity for secretion.  相似文献   

12.
A phospholipase A2 activity directed against phosphatidylcholine was previously described in brush-border membrane from guinea pig intestine (Diagne, A., Mitjavila, S., Fauvel, J., Chap, H., and Douste-Blazy, L. (1987) Lipids 22, 33-40). In the present study, this enzyme was solubilized either with Triton X-100 or upon papain treatment, suggesting a structural similarity with other intestinal hydrolases such as leucine aminopeptidase, sucrase, or trehalase. The papain-solubilized form, which is thought to lack the short hydrophobic tail responsible for membrane anchoring, was purified 1800-fold to about 90% purity by ion exchange chromatography on DEAE-Sephacel, gel filtration on Ultrogel AcA44, and hydrophobic chromatography on phenyl-Sepharose. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a main band with an apparent molecular mass of 97 kDa was detected under reducing and nonreducing conditions. In the latter case, phospholipase A2 activity could be recovered from the gel and was shown to coincide with the 97-kDa protein detected by silver staining. The enzyme activity was unaffected by EGTA and slightly inhibited by CaCl2. The purified enzyme displayed a similar activity against phosphatidylcholine and phosphatidylethanolamine, whereas 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine hydrolysis was reduced by 50% compared to diacylglycerophospholipids. Using phosphatidylcholine labeled with either [3H]palmitic acid or [14C]linoleic acid in the 1- or 2-positions, respectively, the purified enzyme catalyzed the removal of [3H]palmitic acid, although at a lower rate compared to [14C]linoleic acid. This resulted in the formation of sn-glycero-3-phosphocholine, but only 1-[3H]palmitoyl-sn-glycero-3-phosphocholine was detected as an intermediary product. In agreement with this, 1-acyl-2-lyso-sn-[14C]glycero-3-phosphocholine was deacylated at almost the same rate as the sn-2-position of phosphatidylcholine. Since upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the two hydrolytic activities were detected at the same position as 97-kDa protein, the enzyme is thus considered as a phospholipase A2 with lysophospholipase activity (phospholipase B), which might be involved in phospholipid digestion.  相似文献   

13.
The effect of mastoparan, Ile-Asn-Leu-Lys-Ala-Leu-Ala-Ala-Leu-Ala-Lys-Lys-Ile-LeuNH2, and related peptides on the release of arachidonic acid from egg yolk lecithin liposomes, rat peritoneal mast cells, and cultured human fibroblasts was studied. In unsonicated liposomes, labeled with 1-stearoyl-2[1-14C]arachidonyl-sn-glycero-3-phosphocholine, 5 X 10(-5) M mastoparan caused a 12-, 15-, and 50-fold increase in the production of arachidonic acid catalyzed by phospholipase A2 from bee venom, eastern diamondback rattlesnake and porcine pancreas, respectively. The stimulant effect of mastoparan and related peptides was dose-dependent and further enhanced by sonication of liposomes. In contrast, melittin, while stimulating the production of arachidonic acid by phospholipase from bee venom, was inactive with the rattlesnake and pancreatic enzymes. Melittin was also only weakly active with liposomes containing stearic acid in place of arachidonic acid. Like melittin, mastoparans stimulated phospholipase activity in tissue homogenates and caused a dose-dependent release of arachidonic acid from rat peritoneal mast cells and cultured human fibroblasts prelabeled with [14C]arachidonic acid. The heptapeptide fragments mastoparan 1-7 and mastoparan 8-14, and succinylated mastoparan were ineffective. The results suggest that mastoparan and related peptides in insect venoms act, at least in part, by stimulating phospholipase activity.  相似文献   

14.
1.1. Lysosome-enriched fractions were prepared by differential centrifugation of homogenates of luteinized rats ovaries. Acid phospholipase A activities were characterized with [U-14C]diacyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-[9,10-3H]- or [1-14C]oleoyl-sn-glycero-3-phosphocholine as substrates. Acid phospholipase A1 activity had properties similar to other hydrolases of lysosomal origin; subcellular distribution, latency and acidic pH optimum. Acid phospholipase A2 activity with similar characteristics was also tentatively identified. We were unable to exclude the possibility that the combined action of phospholipase A1 and lysophospholipase contributed to the release of acyl moieties from the 2-position of the synthetic substrates. 2. Lysophospholipase activity was present in the lysosome-enriched fractions. This activity had an alkaline pH optimum. 3. Phospholipase A1 and A2 activities solubilized from lysosome fractions by freeze-thawing were inhibited by Ca2+ and slightly activated by EDTA. A Ca2+- stimulated phospholipase A2 activity, with an alkaline pH optimum, remained in the particulate residue of freeze-thawed lysosome preparations. This activity is believed to represent mitochondrial contamination. 4. Activities of acid phospholipase A, as well as other acid hydrolases, increased approx. 1.5-fold between 1 and 4 days following induction of luteinizatin, suggesting a hormonal influence on lysosomal enzyme activities.  相似文献   

15.
The effect of sodium n-butyrate on prostaglandin synthesis in cultured cells was examined. Exposure of BC-90 cells, a clone of an epithelial rat liver cell line, to 1 mM sodium n-butyrate for 40 h induced prostacyclin production. Prostacyclin synthesis was proved by demonstrating: (1) production of labeled 6-ketoprostaglandin F1 alpha by treating [14C]arachidonic acid pre-labeled cells with calcium ionophore A23187, (2) production of unstable substance that inhibited adenosine diphosphate-induced platelet aggregation, and (3) conversion of [14C]arachidonic acid to 6-ketoprostaglandin F1 alpha in homogenates of n-butyrate-treated cells. Untreated control cells showed negligible prostaglandin synthesis. Untreated cell homogenates did not convert [14C]arachidonic acid to any prostaglandins, but they converted [14C]prostaglandin H2 to prostacyclin. Induction of prostacyclin production by n-butyrate was also demonstrated with cells that had been treated with acetylsalicylic acid before n-butyrate treatment in acetylsalicylic acid-free medium. Incorporation of [3H]acetylsalicylic acid by sodium n-butyrate-treated cells increased in accordance with treatment time, while that of untreated cells did not change during culture. There was no difference in the phospholipase A2 activities of n-butyrate-treated and -untreated cells. From these findings, the possibility that n-butyrate induced prostacyclin in BC-90 cells through induction of fatty acid cyclooxygenase activity is discussed.  相似文献   

16.
In this study we provide evidence for the involvement of protein kinase C (PKC) in phorbol diester-induced phosphatidylcholine (PC) hydrolysis by the phospholipase D pathway. Rat embryo fibroblasts (REF52) were prelabeled with either tritiated choline or myristic acid; these compounds are preferentially incorporated into cellular PC. Phorbol diester-induced PC degradation was determined by measuring the release of [3H]choline, and the formation of [3H]myristoyl-containing phosphatidate (PA), diacylglycerol (DG), and phosphatidylethanol (PE). Staurosporine, a PKC inhibitor, blocked from 73 to 90% of the phorbol diester-induced PC hydrolysis. The inhibition of phorbol diester-induced choline release by staurosporine was dose dependent with an approximate ED50 of 150 nM. Pretreatment of cells with phorbol diester inhibited subsequent phorbol diester-induced PC degradation by 78-92%. A close correlation between the ED50 for phorbol diester-stimulated choline release and the Kd for phorbol diester binding was demonstrated. Neither forskolin nor dibutyryl cAMP elicited cellular PC degradation. In vitro experiments using phospholipase D from Streptomyces chromofuscus showed that staurosporine did not inhibit and TPA did not stimulate enzyme activity.  相似文献   

17.
Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. [3H]AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate [3H]AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of [3H]AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of [3H]AA. Analysis of [3H]AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little [3H]AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes. Stimulated increases in PLC activity correlated with enhanced superoxide generation induced by the stimulus.  相似文献   

18.
We studied the ability of rat glomerular mesangial cells and their microsomal fractions to incorporate 1-[14C]hexadecanol to glycerophospholipids via an O-alkyl ether linkage and assessed the presence and activity of the required enzyme: alkyl-dihydroxy acetone phosphate synthase. Suspensions of cultured mesangial cells incorporated 1-[14C]hexadecanol to the phosphatidyl ethanolamine and phosphatidyl choline lipid pools, via a bond resistant to acid and base hydrolysis. When cell homogenates or microsomal fractions were incubated with palmitoyl-DHAP and 1-[14C]hexadecanol, alkyl-DHAP and 1-O-alkyl glycerol were formed (alkyl:hexadecyl). The activity of the enzyme responsible for the O-alkyl product formation was calculated to be 2.5 +/- 0.3 and 544 +/- 50 pmoles/min/mg protein for mesangial cell homogenates and mesangial cell microsomes, respectively. These observations provide evidence that mesangial cells may elaborate either linked lipid precursors de novo for the biosynthesis of O-alkyl glycerophospholipids.  相似文献   

19.
The presence of carbonic anhydrase (type V) was recently documented in rat and mouse pancreatic islet beta-cells by immunostaining and Western blotting. In the present study, the activity of carbonic anhydrase was measured in rat islet homogenates and shown to be about four times lower than in rat parotid cells. The pattern for the inhibitory action of acetazolamide on carbonic anhydrase activity also differed in islet and parotid cell homogenates, suggesting the presence of different isoenzymes. NaN3 inhibited carbonic anhydrase activity in islet homogenates and both D-[U-14C]glucose oxidation and glucose-stimulated insulin secretion. Acetazolamide (0.3-10.0 mM) also decreased glucose-induced insulin output but failed to affect adversely D-[U-14C]glucose oxidation, although it inhibited the conversion of D-[5-3H]glucose to [3H]OH and that of D-[U-14C]glucose to acidic metabolites. Hydrochlorothiazide (3.0-10.0 mM), which also caused a concentration-related inhibition of the secretory response, like acetazolamide (5.0-10.0 mM), decreased H(14)CO3- production from D-[U-14C]glucose (16.7 mM). Acetazolamide (5.0 mM) did not affect the activity of volume-sensitive anion channels in beta-cells but lowered intracellular pH and adversely affected both the bioelectrical response to d-glucose and its effect on the cytosolic concentration of Ca2+ in these cells. The lowering of cellular pH by acetazolamide, which could well be due to inhibition of carbonic anhydrase, might in turn account for inhibition of glycolysis. The perturbation of stimulus-secretion coupling in the beta-cells exposed to acetazolamide may thus involve impaired circulation in the pyruvate-malate shuttle, altered mitochondrial Ca2+ accumulation, and perturbation of Cl- fluxes, resulting in both decreased bioelectrical activity and insulin release.  相似文献   

20.
Diacylglycerol (DAG) is a versatile molecule that participates as substrate in the synthesis of structural and energetic lipids, and acts as the physiological signal that activates protein kinase C. Diacylglycerol acyltransferase (DGAT), the last committed enzyme in triacylglycerol synthesis, could potentially regulate the content and use of both signaling and glycerolipid substrate DAG by converting it into triacylglycerol. To test this hypothesis, we stably overexpressed the DGAT1 mouse gene in human lung SV40-transformed fibroblasts (DGAT cells), which contains high levels of DAG. DGAT cells exhibited a 3.9-fold higher DGAT activity and a 3.2-fold increase in triacylglycerol content, whereas DAG and phosphatidylcholine decreased by 70 and 20%, respectively, compared with empty vector-transfected SV40 cells (Control cells). Both acylation and de novo synthesis of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were reduced by 30-40% in DGAT cells compared with controls, suggesting that DGAT used substrates for triacylglycerol synthesis that had originally been destined to produce phospholipids. The incorporation of [14C]DAG and [14C]fatty acids released from plasma membrane by additions of either phospholipase C or phospholipase A2 into triacylglycerol was increased by 6.2- and 2.8-fold, respectively, in DGAT cells compared with control cells, indicating that DGAT can attenuate signaling lipids. Finally, DGAT overexpression reversed the neoplastic phenotype because it dramatically reduced the cell growth rate and suppressed the anchorage-independent growth of the SV40 cells. These results strongly support the view that DGAT participates in the regulation of membrane lipid synthesis and lipid signaling, thereby playing an important role in modulating cell growth properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号