首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus isolations from mosquitoes in southern Ontario, 1976 and 1977   总被引:2,自引:0,他引:2  
Following the 1975 epidemic of St. Louis encephalitis (SLE) in Ontario, programs were instituted to monitor virus activity in mosquito populations during 1976 and 1977. Mosquitoes were trapped with CDC light traps and CO2 cone traps, pooled by species, and tested for virus by intracerebral inoculation of suckling mice. In 1976, 51 175 mosquitoes were tested. SLE virus was isolated from two mixed pools of Culex pipiens--C. restuans mosquitoes. Five isolations of California serogroup viruses were made. Three of these were trivittatus virus, which has not been demonstrated previously in Canada, and the other two were snowshoe have virus. Other viruses isolated in 1976 were a virus antigenically identical to the virus of infectious bursal disease of chickens and 34 Flanders viruses. In 1977, 34 428 mosquitoes were tested. Flanders virus was isolated most frequently, from pools of mixed C. pipiens--C. restuans mosquitoes. The only other isolate was a Bunyamwera group virus, Cache Valley virus. This virus has not been reported previously in Ontario.  相似文献   

2.
Between October 1974 and May 1976, 57 596 mosquitoes, 169 957 Culicoides, 5923 Lasiohelea and 1043 phlebotomines were collected for virus isolation at Beatrice Hill (lat. 12 degrees 39'S.,long. 131 degrees 20'E.) in the Northern Territory of Australia. A total of 94 viruses belonging to 22 different serological groupings was isolated. The following species of insect yielded viruses which were identified and those viruses marked with an asterisk represent a new record of insect host: Culex annulirostris: Ross River, Kokobera, Barmah Forest, Corriparta, Eubenangee*, Wongorr; Anopheles amictus: Mapputta*; An bancroftii: bovine ephemeral fever*; An farauti: Eubenangee*; An annulipes: Mapputta; Culicoides marksi: Barmah Forest*, Belmont, Eubenangee*, Wallal, Warrego, Leanyer*, Parker's Farm*, Humpty Doo*; C. peregrinus: Beatrice Hill*; C. oxystoma: Bunyip Creek*, Marrakai*; C. pallidothorax: Wongorr*; C. histrio: Thimiri*; Lasiohelea spp.: Humpty Doo*. Pools of mixed species of Culicoides yielded bluetongue, Belmont, CSIRO Village, Warrego and Facey's Paddock viruses. Filter-passing agents not yet identified, were isolated from Cx annulirostris and An bancroftii. As well as providing new locality records for all but one of the 22 viruses isolated, the study yielded five new viruses (bluetongue serotype 20, CSIRO Village, Marrakai, Beatrice Hill and Humpty Doo viruses) and a new record for Thimiri virus which had not been recorded previously in Australia nor had it been isolated from an arthropod. Nine of the viruses isolated occur in more than one family of Diptera.  相似文献   

3.
We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected.  相似文献   

4.
One hundred and thirty presumptive viruses have been isolated from 485 pools made from 23,872 mosquitoes collected in the Ord River area of North-West Australia. One hundred and eleven of the virus isolates isolates came from pools of Culex annulirostis, the dominant mosquito species caught in the vicinity of Kununurra. Forty-five of the viruses pathogenic for newborn mice have been further characterized-19 as Flaviviruses, 1 Alphavirus, 9 Koongol, 1 Mapputta and 15 non-haemagglutinating viruses of which 6 are Corripata. Thirty-seven isolates were from Culex annulirostis, 7 from Aedomyia catasticta and 1 from aedes tremulus. All Corriparta isolates were from Aedomyia catasticta. The Flaviviruses comprised 13 Kunjin and 6 MVE isolates.  相似文献   

5.
Virus-specific polypeptide synthesis was examined in BHK cells and Vero cells infected with Bunyamwera virus. In BHK cells, in addition to the four previously reported virus-coded proteins (L, G1, G2, and N), three other infection-specific proteins were detected. These proteins, of nominal molecular weight 50,000 (p50), 16,000 (p16), and 13,000 (p13), were not labeled in mock-infected cells, were first synthesized between 4 and 8 h after infection, and were relatively prominent among the limited number of proteins generated late in infection. In preparations of purified Bunyamwera virus from BHK cell supernatants, p16 was detected but not p50 or p13. In Vero cells infected with Bunyamwera virus, both p50 and p13 were labeled strongly. Maprik virus, a member of the Mapputta group of arboviruses, is a member of the Bunyavirus genus (S.E. Newton, unpublished data). Maprik virus did not induce the synthesis of p50, p16, or p13; however, two smaller proteins (p17 and p15) which may correspond to p16 and p13 were labeled late in Maprik infection. Our data argue that p16 is a virus-coded component of the Bunyamwera virus particle and that p50 and p13 are virus-coded, nonstructural proteins.  相似文献   

6.

Background

Cholera is endemic in Bangladesh, with outbreaks reported annually. Currently, the majority of epidemic cholera reported globally is El Tor biotype Vibrio cholerae isolates of the serogroup O1. However, in Bangladesh, outbreaks attributed to V. cholerae serogroup O139 isolates, which fall within the same phylogenetic lineage as the O1 serogroup isolates, were seen between 1992 and 1993 and in 2002 to 2005. Since then, V. cholerae serogroup O139 has only been sporadically isolated in Bangladesh and is now rarely isolated elsewhere.

Methods

Here, we present case histories of four cholera patients infected with V. cholerae serogroup O139 in 2013 and 2014 in Bangladesh. We comprehensively typed these isolates using conventional approaches, as well as by whole genome sequencing. Phenotypic typing and PCR confirmed all four isolates belonging to the O139 serogroup.

Findings

Whole genome sequencing revealed that three of the isolates were phylogenetically closely related to previously sequenced El Tor biotype, pandemic 7, toxigenic V. cholerae O139 isolates originating from Bangladesh and elsewhere. The fourth isolate was a non-toxigenic V. cholerae that, by conventional approaches, typed as O139 serogroup but was genetically divergent from previously sequenced pandemic 7 V. cholerae lineages belonging to the O139 or O1 serogroups.

Conclusion

These results suggest that previously observed lineages of V. cholerae O139 persist in Bangladesh and can cause clinical disease and that a novel disease-causing non-toxigenic O139 isolate also occurs.  相似文献   

7.
In 2011, Schmallenberg virus (SBV), a novel member of the Simbu serogroup, genus Orthobunyavirus, was identified as the causative agent of a disease in ruminants in Europe. Based on the current knowledge on arthropods involved in the transmission of Simbu group viruses, a role of both midges and mosquitoes in the SBV transmission cycle cannot be excluded beforehand. The persistence of SBV in mosquitoes overwintering at SBV‐affected farms in the Netherlands was investigated. No evidence for the presence of SBV in 868 hibernating mosquitoes (Culex, Anopheles, and Culiseta spp., collected from January to March 2012) was found. This suggests that mosquitoes do not play an important role, if any, in the persistence of SBV during the winter months in northwestern Europe.  相似文献   

8.

Background

First described in humans in 1964, reports of co-infections with dengue (DENV) and chikungunya (CHIKV) viruses are increasing, particularly after the emergence of chikungunya (CHIK) in the Indian Ocean in 2005–2006 due to a new variant highly transmitted by Aedes albopictus. In this geographic area, a dengue (DEN) outbreak transmitted by Ae. albopictus took place shortly before the emergence of CHIK and co-infections were reported in patients. A co-infection in humans can occur following the bite of two mosquitoes infected with one virus or to the bite of a mosquito infected with two viruses. Co-infections in mosquitoes have never been demonstrated in the field or in the laboratory. Thus, we question about the ability of a mosquito to deliver infectious particles of two different viruses through the female saliva.

Methodology/Principal Findings

We orally exposed Ae. albopictus from La Reunion Island with DENV-1 and CHIKV isolated respectively during the 2004–2005 and the 2005–2006 outbreaks on this same island. We were able to show that Ae. albopictus could disseminate both viruses and deliver both infectious viral particles concomitantly in its saliva. We also succeeded in inducing a secondary infection with CHIKV in mosquitoes previously inoculated with DENV-1.

Conclusions/Significance

In this study, we underline the ability of Ae. albopictus to be orally co-infected with two different arboviruses and furthermore, its capacity to deliver concomitantly infectious particles of CHIKV and DENV in saliva. This finding is of particular concern as Ae. albopictus is still expanding its geographical range in the tropical as well as in the temperate regions. Further studies are needed to try to elucidate the molecular/cellular basis of this phenomenon.  相似文献   

9.
Arthropod-borne viruses are a group of the most important emerging pathogens. They cause a range of diseases in vertebrate hosts and threaten human health (Gan and Leo, 2014). The global distribution of arboviruses is associated with the vector which is strongly affected by changes in environmental conditions. Dengue virus (DENV) and Chikungunya virus (CHIKV), which cause high annual infected cases and have an increasing geographic distribution, are transmitted by Aedes spp. mosquitoes, in particular Ae. albopictus and Ae. Aegypti (Presti et al., 2014; Higuera and Ramírez, 2018). Although, the main vector of dengue virus, Ae. aegypti, was not detected in Iran, other possible important vectors such as Ae. Albopictus and Ae. unilineatus were recorded (Doosti et al., 2016; Yaghoobi-Ershadi et al., 2017). West Nile virus (WNV), a member of the genus Flaviviruses, is one of the most widespread arboviruses (Chancey et al., 2015). The epidemiological evidence of WNV in different hosts in Iran was found (Bagheri et al., 2015), and the circulation of WNV in the main vector, Culex pipiens s.l. and Cx. pipiens, has been proved (Shahhosseini et al., 2017). Due to limited information on the situation of CHIKV, DENV and WNV in Iran, we performed a wide geographical investigation to determine the prevalence of IgG specific antibodies in human samples as well as the genome of WNV, CHIKV and DENV in mosquitoes.  相似文献   

10.
Macquarie Island, a small subantarctic island, is home to rockhopper, royal and king penguins, which are often infested with the globally distributed seabird tick, Ixodes uriae. A flavivirus, an orbivirus, a phlebovirus, and a nairovirus were isolated from these ticks and partial sequences obtained. The flavivirus was nearly identical to Gadgets Gully virus, isolated some 30 year previously, illustrating the remarkable genetic stability of this virus. The nearest relative to the orbivirus (for which we propose the name Sandy Bay virus) was the Scottish Broadhaven virus, and provided only the second available sequences from the Great Island orbivirus serogroup. The phlebovirus (for which we propose the name Catch-me-cave virus) and the previously isolated Precarious Point virus were distinct but related, with both showing homology with the Finnish Uukuniemi virus. These penguin viruses provided the second and third available sequences for the Uukuniemi group of phleboviruses. The nairovirus (for which we propose the name Finch Creek virus) was shown to be related to the North American Tillamook virus, the Asian Hazara virus and Nairobi sheep disease virus. Macquarie Island penguins thus harbour arboviruses from at least four of the seven arbovirus-containing genera, with related viruses often found in the northern hemisphere.  相似文献   

11.

Background

Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors.

Methodology and Principal Findings

Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus.

Conclusions/Significance

In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.  相似文献   

12.
A field investigation of arboviruses was conducted in Dejiang, Guizhou Province in the summer of 2016. A total of 8,795 mosquitoes, belonging to four species of three genera, and 1,300 midges were collected. The mosquito samples were identified on site according to their morphology, and the pooled samples were ground and centrifuged in the laboratory. The supernatant was incubated with mosquito tissue culture cells (C6/36) and mammalian cells (BHK-21) for virus isolation. The results indicated that 40% (3,540/8,795) were Anopheles sinensis, 30% (2,700/8,795) were Culex pipiens quinquefasciatus, and 29% (2,530/8,795) were Armigeres subbalbeatus. Furthermore, a total of eight virus isolates were obtained, and genome sequencing revealed two Zika viruses (ZIKVs) isolated from Culex pipiens quinquefasciatus and Armigeres subbalbeatus, respectively; three Japanese encephalitis viruses (JEVs) isolated from Culex pipiens quinquefasciatus; two Banna viruses (BAVs) isolated from Culex pipiens quinquefasciatus and Anopheles sinensis, respectively; and one densovirus (DNV) isolated from Culex pipiens quinquefasciatus. The ZIKVs isolated from the Culex pipiens quinquefasciatus and Armigeres subbalbeatus mosquitoes represent the first ZIKV isolates in mainland China. This discovery presents new challenges for the prevention and control of ZIKV in China, and prompts international cooperation on this global issue.  相似文献   

13.
Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity.  相似文献   

14.
Octodontoidea is the most diverse group of caviomorph rodents. The systematics of most of the fossil representatives has been essentially based upon dental characters. Described here is an almost complete skull with dentition assigned to Prospaniomys Ameghino based upon its dental morphology. The specimen comes from the Sarmiento Formation at Pampa de Gan Gan (central Patagonia, Argentina), assigned to the Colhuehuapian SALMA (early Miocene). The most remarkable features are in the posterior portion of the skull, some of them shared with the modern octodontids and interpreted as specialized by previous authors, which contrast with the generalized dental morphology. These combined features were not previously known in other octodontoids. The comparisons with other fossil and extant members of the superfamily suggest that the characters traditionally used to associate Prospaniomys with the echimyids are very probably plesiomorphies. Prospaniomys would represent an early diverging lineage more closely related to modern octodontids than to echimyids, in which cranial structures evolved more rapidly than dental and mandibular ones.  相似文献   

15.
Between November 2010, and May 2011, eleven cases of cholera, unrelated to a concurrent outbreak on the island of Hispaniola, were recorded, and the causative agent, Vibrio cholerae serogroup O75, was traced to oysters harvested from Apalachicola Bay, Florida. From the 11 diagnosed cases, eight isolates of V. cholerae were isolated and their genomes were sequenced. Genomic analysis demonstrated the presence of a suite of mobile elements previously shown to be involved in the disease process of cholera (ctxAB, VPI-1 and -2, and a VSP-II like variant) and a phylogenomic analysis showed the isolates to be sister taxa to toxigenic V. cholerae V51 serogroup O141, a clinical strain isolated 23 years earlier. Toxigenic V. cholerae O75 has been repeatedly isolated from clinical cases in the southeastern United States and toxigenic V. cholerae O141 isolates have been isolated globally from clinical cases over several decades. Comparative genomics, phenotypic analyses, and a Caenorhabditis elegans model of infection for the isolates were conducted. This analysis coupled with isolation data of V. cholerae O75 and O141 suggests these strains may represent an underappreciated clade of cholera-causing strains responsible for significant disease burden globally.  相似文献   

16.
Vast viruses are thought to be associated with mosquitoes. Anopheles sinensis, Armigeres subalbatus, Culex quinquefasciatus, and Culex tritaeniorhynchus are very common mosquito species in China, and whether the virome structure in each species is species-specific has not been evaluated. In this study, a total of 2222 mosquitoes were collected from the same geographic location, and RNAs were sequenced using the Illumina Miseq platform. After querying to the Refseq database, a total of 3,435,781, 2,223,509, 5,727,523, and 6,387,867 paired-end reads were classified under viral sequences from An. sinensis, Ar. subalbatus, Cx. quinquefasciatus, and Cx. tritaeniorhynchus, respectively, with the highest prevalence of virus-associated reads being observed in Cx. quinquefasciatus. The metagenomic comparison analysis showed that the virus-related reads were distributed across 26 virus families, together with an unclassified group of viruses. Anelloviridae, Circoviridae, Genomoviridae, Iridoviridae, Mesoniviridae, Microviridae, Myoviridae, Parvoviridae, Phenuiviridae, and Podoviridae were the top ten significantly different viral families among the four species. Further analysis reveals that the virome is species-specific in four mosquito samples, and several viral sequences which maybe belong to novel viruses are discovered for the first time in those mosquitoes. This investigation provides a basis for a comprehensive knowledge on the mosquito virome status in China.  相似文献   

17.
During the last 20 years, the epidemiology of Japanese encephalitis virus (JEV) has changed significantly in its endemic regions due to the gradual displacement of the previously dominant genotype III (GIII) with clade b of GI (GI-b). Whilst there is only limited genetic difference distinguishing the two GI clades (GI-a and GI-b), GI-b has shown a significantly wider and more rapid dispersal pattern in several regions in Asia than the GI-a clade, which remains restricted in its geographic distribution since its emergence. Although previously published molecular epidemiological evidence has shown distinct phylodynamic patterns, characterization of the two GI clades has only been limited to in vitro studies. In this study, Culex quinquefasciatus, a known competent JEV mosquito vector species, was orally challenged with three JEV strains each representing GI-a, GI-b, and GIII, respectively. Infection and dissemination were determined based on the detection of infectious viruses in homogenized mosquitoes. Detection of JEV RNA in mosquito saliva at 14 days post infection indicated that Cx. quinquefasciatus can be a competent vector species for both GI and GIII strains. Significantly higher infection rates in mosquitoes exposed to the GI-b and GIII strains than the GI-a strain suggest infectivity in arthropod vectors may lead to the selective advantage of previously and currently dominant genotypes. It could thus play a role in enzootic transmission cycles for the maintenance of JEV if this virus were ever to be introduced into North America.  相似文献   

18.
Since 1983, cases of diseased donkeys and horses with symptoms similar to those produced by alphaviruses were identified in two departments in northern Peru; however serological testing ruled out the presence of those viruses and attempts to isolate an agent were also unproductive. In 1997, also in northern Peru, two new orbiviruses were discovered, each recognized as a causative agent of neurological diseases in livestock and domestic animals and, at the same time, mosquitoes were found to be infected with these viruses. Peruvian horse sickness virus (PHSV) was isolated from pools of culicid mosquitoes, Aedes serratus and Psorophora ferox, and Yunnan virus (YUOV) was isolated from Aedes scapularis in the subtropical jungle (upper jungle) located on the slope between the east side of the Andes and the Amazonian basin in the Department of San Martín. Both viruses later were recovered from mosquitoes collected above the slope between the west side of the Andes and the coast (Department of Piura) in humid subtropical areas associated with the Piura River basin. In this region, PHSV was isolated from Anopheles albimanus and YUOV was isolated from Ae. scapularis. We discuss the ecology of vector mosquitoes during the outbreaks in the areas where these mosquitoes were found.  相似文献   

19.
Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups possess very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be subject to the same evolutionary pressures that shaped their host coding regions, evidencing the lineage-specific coevolutionary processes between the viral and host groups.  相似文献   

20.
BackgroundAfter a multi-country Asian outbreak of cholera due to Vibrio cholerae serogroup O139 which started in 1992, it is rarely detected from any country in Asia and has not been detected from patients in Africa.Methodology/Principal findingsWe extracted surveillance data from the Dhaka and Matlab Hospitals of International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) to review trends in isolation of Vibrio cholerae O139 in Bangladesh. Data from the Dhaka Hospital is a 2% sample of > 100,000 diarrhoeal patients treated annually. Data from the Matlab Hospital includes all diarrhoeal patients who hail from the villages included in the Matlab Health and Demographic Surveillance System. Vibrio cholerae O139 was first isolated in Dhaka in 1993 and had been isolated every year since then except for a gap between 2005 and 2008. An average of thirteen isolates was detected annually from the Dhaka Hospital during the last ten years, yielding an estimated 650 cases annually at this hospital. During the last ten years, cases due to serogroup O139 represented 0.47% of all cholera cases; the others being due to serogroup O1. No cases with serogroup O139 were identified at Matlab since 2006. Clinical signs and symptoms of cholera due to serogroup O139 were similar to cases due to serogroup O1 though more of the O139 cases were not dehydrated. Most isolates of O139 remained sensitive to tetracycline, ciprofloxacin, and azithromycin, but they became resistant to erythromycin starting in 2009.Conclusions/SignificanceCholera due to Vibrio cholerae serogroup O139 continues to cause typical cholera in Dhaka, Bangladesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号