首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoluminescence (TL) emission of dental ceramics could be potentially used for retrospective dosimetry purposes as this allows a quick and reliable dose assessment in case of nuclear accident or bad use of a nuclear attack. This paper reports on the chemical and luminescence characterization of glass, feldspathic and lithium disilicate glass ceramic (LS2). Swedish and Turkish dental ceramics supplied by Vivadent Ivoclar considering: (i) the dose response in the range 10 Gy to 6.9 kGy which displays a linear dose?response at low dose values up to 36 Gy (glass and feldspathic ceramics) and shows sublinear behavior from 12 Gy to 6 kGy (lithium disilicate glass ceramics), (ii) a reproducibility of the TL signal in which the area under the glow curve increased about 25% after 10 cycles for glass and lithium disilicate ceramics and increased about 30% after seven cycles for feldspathic ceramics, (iii) stability of the luminescence emission with the elapsed time and (iv) effect of the heating rate. Glass, lithium disilicate and feldspathic ceramics display a complex UV‐blue glow emission that can be respectively fitted to five and four groups of components assuming first‐order kinetics behavior.  相似文献   

2.
Dental ceramics because of their translucency exemplify the most biologically realistic restorative materials for aesthetic rehabilitation and can be used to estimate dose accumulated as a result of a nuclear accident or attack. In this study, lithium disilicate ceramic obtained from Vivadent Ivoclar, Turkey was studied for its thermoluminescence (TL) properties. The lithium disilicate glass ceramic was irradiated with a 90Sr–90Y β‐source from 10 Gy to 6.9 kGy and the results read on a Harshaw 3500 reader. The TL peak of lithium disilicate ceramic showed sublinearity in the range 12 Gy to 6 kGy. The area under the TL glow curve increased by about 25% by the end of 10th measurement cycle. Fading values were also considered after irradiation. Lithium disilicate ceramic samples underwent 37% fading after 1 h and 59% fading after 1 week. In addition to the experimental study, a software‐based simulation study was also undertaken using a MATLAB system identification tool. Experimental studies are generally time consuming and some materials used for experiments are very expensive. In this study, experimental, and simulation results were compared and produced almost the same outcome with a similarity of more than 98%.  相似文献   

3.
This paper presents details of the fabrication of a glass ceramic, and its application as an artificial bone prosthetic material. This new bioglass ceramic, with composition of Na2O 8.4%, CaO 40.6%, P2O5 12% and SiO2 39%, had 160–190 MPa and 800–980 MPa of three-point bending strength and compressive strength respectively. The ceramic has a (Na, Ca) (P, Si) O3 crystalline phase with a uniform crystal size of about 10μm, which was attributed to the high nucleation frequency. The rabbit condyle test showed that the material formed a tight chemical bond with biological texture and had good biocompatibility.  相似文献   

4.
Computer modelling techniques were used to investigate the structures and stabilities of Li–K solid solutions of three different disilicate structures, employing a newly developed program based on symmetry arguments to identify identical configurations and hence eliminate unnecessary duplication of calculations. Even so, the large number of calculations needed to sample the complete set of configurations of a wide range of solid solutions necessitated the use of an extensive Condor pool of PC clusters, which afforded the necessary computing resources for this study.

The results of our calculations show that in the wide range of Li–K solid solutions investigated, the mixed-cationic KLiSi2O5 material retains its original structure when the composition was varied, where six-membered rings of silica tetrahedra are linked to form continuous channels throughout the structure. The channel positions are found to be preferentially occupied by the potassium ions rather than by the smaller lithium ions. The original framework of the experimental K2Si2O5 structure, containing 14-membered rings of silica tetrahedra, similarly remains intact with the introduction of smaller lithium atoms into the bigger potassium lattice sites. However, the replacement of potassium ions for lithium ions in the Li2Si2O5 material causes significant distortions of the original structure, which loses its symmetry, although the ring structure remains.  相似文献   

5.
A porous bioglass ceramic was prepared from a finely pulverized bioglass powder mixed with particles of two sizes (5 and 500 μm) of 30% by weight with the foaming agent polyethylene glycol 4000 (HO (C2H4O) nH). The batch composition of the bioglass was Na2O 12%, CaO 28%, SiO2 50% and P2O5 10% by weight. The specimens, formed by pressing, were sintered in a high temperature furnace. In this study we are concerned with the preparation and microstructure of the material and its performance in biological tests. The microstructure and crystalline phases of the material were investigated by differential thermal analysis, X-ray diffraction analysis, transmission electron microscopy and scanning electron microscopy. In a biomedical examination, it was shown that the porous material was compatible with animal tissues. The microstructure of the implant indicated that newly grown bone interlocked well with the glass ceramic and that macropores and micropores were distributed uniformly in the material, which provided channels for bone ingrowth and improved the microscopic bioresorption.  相似文献   

6.
Lithium borosilicate glass composite (SiO2–Li2CO3–H3BO3) doped with various concentrations of Sm2O3 (0–0.7 mole %) was prepared using the melt quenching method. The investigated thermoluminescence (TL) characteristics of the prepared system revealed that the highest TL response was obtained for this glass composite at 0.05 mol% Sm2O3. In this study, the 0.05 mol% Sm2O3‐doped lithium borosilicate glass composite was subjected to detailed dosimetric investigation in terms of its annealing condition, dose–response, and minimum detectable dose. The reproducibility of the response, thermal characteristics, and optical fading were also studied. The obtained results showed that the prepared glass composite had a linear dose–response over the wide gamma dose range 2Gy to 2 kGy, as well as reasonable thermal fading and excellent reproducibility. These attributes render the composite under investigation promising for utilization in radiation detection.  相似文献   

7.
doi: 10.1111/j.1741‐2358.2011.00565.x
Shear bond strength between different materials bonded with two resin cements Background: The aim of this study was to compare the shear bond strength between Ni–Cr alloy specimens bonded to air‐abraded Ni–Cr, bur‐abraded Ni–Cr, etched ceramic and etched enamel substrates using the resin cements RelyX ARC or Enforce. Materials and methods: Ni–Cr specimens were made and sandblasted with Al2O3 airborne‐particles. Disc‐shaped patterns were made for each of the four experimental substrates: Ni–Cr treated with Al2O3 airborne‐particles, Ni–Cr treated with diamond bur abrasion, etched enamel and etched ceramic. Results: Significant differences in shear bond strength were found between the different materials and luting agents evaluated. The Ni–Cr alloy cylinders bonded to Ni–Cr surfaces sandblasted with 50 μm Al2O3 particles and bonded with Enforce achieved the highest bond strength when compared with other substrates (28.9 MPa, p < 0.05). Bur‐abraded metal discs had lowest values, regardless the cement used (2.9 and 6.9 MPa for RelyX and Enforce, respectively). Etched enamel and etched ceramic had similar shear bond strengths within cement groups and performed better when RelyX was used. Conclusions: Bonding Ni–Cr to Ni–Cr and ceramic may result in similar and higher bond strength when compared to Ni–Cr/enamel bonding. For metal/metal bonding, higher shear bond strength was achieved with resin cement Enforce, and for metal/ceramic and metal/enamel bonding, RelyX had higher results.  相似文献   

8.
摘要 目的:探究氧化锆强化硅酸锂玻璃陶瓷与Lava UItimate优韧瓷嵌体修复根管治疗后大面积缺损牙的咀嚼能力和外观的效果。方法:选择298例牙缺损患者随机分为观察组和对照组2组,其中观察组患者给与Lava UItimate优韧瓷嵌体修复治疗,对照组给与氧化锆强化硅酸锂玻璃陶瓷嵌体修复治疗。对比分析两组患者修复效果、咀嚼能力、外观变化、牙龈指数和菌斑指数、修复满意度以及并发症发生率。结果:观察组患者修复的完整度为99.33 %,颜色匹配度为97.32 %,边缘适合性为98.66 %,均显著高于对照组的77.18 %、65.77 %和67.11 %(P<0.05)。修复后,观察组患者的咀嚼能力、外观变化显著优于对照组(P<0.05),PLI和GI显著低于对照组(P<0.05)。并且,观察组患者对修复的总满意度为99.33 %,显著高于对照组的82.55 %(P<0.05),并发症发生率为2.01 %,显著低于对照组的29.53 %(P<0.05)。结论:Lava UItimate优韧瓷嵌体修复根管治疗后大面积缺损牙的咀嚼能力和外观的效果较氧化锆强化硅酸锂玻璃陶瓷好,可显著降低并发症发生率,提高患者满意度,值得临床推广使用。  相似文献   

9.
氧化铝玻璃复合体强度及断裂韧性的研究   总被引:2,自引:0,他引:2  
全瓷修复材料抗拉强度,脆性大且制作困难,限制了它在牙科临床上应用,随着CAD/CAM技术和Ih-Ceram技术的完美结合,使得牙科陶瓷强度和断裂韧性很大的提高,给临床全瓷修复体的制作提供了新的途径,本研究采用α型高纯度,超细氧化铝粉末,经等静压处理,在在1350℃下烧结成一定强度的多孔氧化铝坯体。最后在多孔氧化铝坯体的表面采用镧硅硼玻璃进行渗透,制作具有一定强度和半透明的氧化铝玻璃复合体。结果表明  相似文献   

10.
Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic''s EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic.  相似文献   

11.
Mathematical simulation and experimental measurement of dissolved O2 were performed for extended (up to 8 h) shear testing of Daucus carota (carrot) cell cultures in a conventional Couette viscometer (0.625 mm annulus). The results suggest O2 depletion below critical levels for cell growth may occur. A novel design modification incorporating an O2-permeable silicone-layer spun cast on a porous ceramic bowl was devised. It significantly improved oxygenation of the cell cultures, keeping dissolved O2 near saturation.  相似文献   

12.
Dental orthopantogram (OPG)/cone beam computed tomography (CBCT) scanners are gaining popularity due to their 3D imaging with multiplanar view that provides clinical benefits over conventional dental radiography systems. Dental OPG/CBCT provides optimal visualization of adjacent overlaying anatomical structures that will be superpositioned in any single projection. The characteristics of indigenously developed optically stimulated luminescence dosimeters, namely, aluminium oxide doped with carbon (Al2O3:C), lithium magnesium phosphate doped with terbium and boron (LiMgPO4:Tb,B) and lithium calcium aluminium fluoride doped with europium and yttrium (LiCaAlF6:Eu,Y) were evaluated for their use in dental dosimetry. The dose?response of these dosimeters was studied at X‐ray energies 60 kV, 70 kV and 81 kV. Radiation doses were also measured using Gafchromic film for comparison. Radiation dose was measured at eight different locations of a polymethyl methacrylate (PMMA) head phantom including eyes. The optically stimulated luminescence (OSL) sensitivity of LiMgPO4:Tb,B is about 1.5 times and LiCaAlF6:Eu, is about 20 times higher than the sensitivity of Al2O3:C. It was found that measured radiation doses by the three optically stimulated luminescence dosimeters (OSLDs) and Gafchromic film in the occipital region (back side) of a PMMA phantom, were consistent but variations in dose at other locations were significantly higher. The three OSLDs used in this study were found to be suitable for radiation dose measurement in dental units.  相似文献   

13.
The structural evolution of electrochemically prelithiated Fe2O3 nanoparticles confined in carbon nanotubes (CNTs) during lithium insertion/extraction is studied by in situ transmission electron microscopy. It is found that the aggregation and coarsening of Fe core‐containing Li2O (Fe@Li2O) nanograins formed during the charge process are prevented by the spatial restriction of the CNTs. A high reversible capacity of 2071 mA h g?1 for the encapsulated Fe2O3 nanoparticles in CNTs is demonstrated when the material is used as the anode of lithium ion batteries. This is the highest reversible capacity ever reported for an Fe2O3 electrode. The significantly improved lithium storage capacity of the Fe2O3 nanoparticles is attributed to the extra lithium storage due to the enhanced interfacial lithium storage and reversible reaction of LiOH to form LiH and solid‐electrolyte‐interphase conversion originating from the nanoconfinement of CNTs as well as the very small particle size of the Fe@Li2O nanograins and their good electrical contact with CNTs.  相似文献   

14.
Membrane mass spectrometry (MMS) with reduced sample withdrawal has been used to investigate the metabolic activity of yeast cells immobilised in porous glass. An adapted MS membrane inlet reactor with a polyethylene terephthalate barrier membrane has been constructed for this purpose. In a first experiment, the mass transport of O2 in a porous glass disc under well-defined experimental conditions has been studied by determining the apparent effective diffusion coefficient. The behaviour of immobilised Saccharomyces cerevisiae has been monitored by the MMS measurement of O2 and CO2 after applying a step in glucose concentration. Free-cell kinetic parameters were used in a dynamic reaction-diffusion model to simulate the O2 consumption curve. The theoretical and experimental curve showed comparable behaviour, which means that the immobilisation of yeast cells in porous glass has no substantial effect on its growth kinetics.  相似文献   

15.
Vanadium pentoxide (V2O5) has played important roles in lithium‐ion batteries due to its unique crystalline structure. To assist researchers understanding the roles this material plays, a comprehensive and critical review is conducted based on about 250 publications. Here, we report basics and applications of micro‐ and nano‐materials of V2O5 and V2O5‐based composites. The comparative and statistical analysis leads to the discovery of several interesting phenomena. The V2O5 electrodes with two lithium ions have a favorable capacity performance with reversible phase formation. The excellent capacity retention is displayed in the V2O5 electrodes with one lithium ion inserted. In the case of three lithium ions insertion, it was found that the irreversible formation of the phase ω in LixV2O5 leads to its control. In addition, effects of additives on electrode performance, circuitry models of performance, as well as reaction routes are studied. Two unprecedented concepts of the “high capacity band” and “empirical total capacity retention” are proposed though the comprehensive statistical analysis of the reviewed data. This review provides a comprehensive collection of information of state‐of‐the‐art and recent advancement in V2O5 and V2O5‐based composite materials for electrodes. Researchers could use the information to design and develop advanced electrodes for future batteries.  相似文献   

16.
In recent years metal-free ceramic systems have become increasingly popular in dental practice because of their superior aesthetics, chemical durability and biocompatibility. Recently, manufacturers have proposed new dental ceramic systems that are advertised as being suitable for posterior fixed partial dentures (FPDs). Reports indicate that some of these systems have exhibited poor clinical performance. The objective of this study was to use the viscoelastic option of the ANSYS finite element program to calculate residual stresses in an all-ceramic FPD for four ceramic-ceramic combinations. A three-dimensional finite element model of the FPD was constructed from digitized scanning data and calculations were performed for four systems: (1) IPS Empress 2, a glass-veneering material, and Empress 2 core ceramic; (2) IPS Eris a low fusing fluorapatite-containing glass-veneering ceramic, and Empress 2 core ceramic; (3) IPS Empress 2 veneer and an experimental lithium-disilicate-based core ceramic; and (4) IPS Eris and an experimental lithium-disilicate-based core ceramic. The maximum residual tensile stresses in the veneer layer for these combinations are as follows: (1) 77 MPa, (2) 108 MPa, (3) 79 MPa, and (4) 100 MPa. These stresses are relatively high compared to the flexural strengths of these materials. In all cases, the maximum residual tensile stresses in the core frameworks were well below the flexural strengths of these materials. We conclude that the high residual tensile stresses in all-ceramic FPDs with a layering ceramic may place these systems in jeopardy of failure under occlusal loading in the oral cavity.  相似文献   

17.
Exposure to high O2 concentrations may stimulate, have no effect or retard fruit ripening depending upon the commodity, O2 concentration and storage time among other variables. The ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) was used to investigate ethylene-mediated softening responses of Williams banana fruit exposed to elevated O2 for various periods of time. Fruit softening was measured at 25 °C and 90% relative humidity. Exposure to high O2 concentrations for 5 days resulted in accelerated softening. Softening of fruit treated with 1-MCP for 12 h followed by 5 days of storage in high O2 atmospheres at 25 °C was enhanced with increasing O2 concentration between 21 and 100%. However, overall softening was much less compared to non-1-MCP-treated fruit. Softening of 1-MCP-treated fruit was progressively enhanced with increasing holding time from 5 to 20 days. Fruit treated with 1-MCP and then held for 10 days in high O2 atmospheres followed by exposure to ethylene for 24 h and subsequent storage for 5 days at 25 °C softened more rapidly than those held in air for 10 days. 1-MCP-treated fruit held in various high O2 atmospheres can regain gradually the sensitivity to ethylene and finally ripen over time. Enhanced softening of fruit exposed to elevated O2 concentrations suggests that high O2 treatments enhance synthesis of new ethylene binding sites.  相似文献   

18.
New transparent optodes for life-time based microscopic imaging of O2 were developed by spin-coating a μm-thin layer of a highly luminescent cyclometalated iridium(III) coumarin complex in polystyrene onto glass cover slips. Compared to similar thin-film O2 optodes based on a ruthenium(II) polypyridyl complex or a platinum(II) porphyrin, the new planar sensors have i) higher brightness allowing for much shorter exposure times and thus higher time resolution, ii) more homogeneous and smaller pixel to pixel variation over the sensor area resulting in less noisy O2 images, and iii) a lower temperature dependency simplifying calibration procedures. We used the new optodes for microscopic imaging of the spatio-temporal O2 dynamics at the base of heterotrophic biofilms in combination with confocal imaging of bacterial biomass and biofilm structure. This allowed us to directly link biomass distribution to O2 distribution under both steady state and non-steady state conditions. We demonstrate that the O2 dynamics in biofilms is governed by a complex interaction between biomass distribution, mass transfer and flow that cannot be directly inferred from structural information on biomass distribution alone.  相似文献   

19.
Securing the chemical and physical stabilities of electrode/solid‐electrolyte interfaces is crucial for the use of solid electrolytes in all‐solid‐state batteries. Directly probing these interfaces during electrochemical reactions would significantly enrich the mechanistic understanding and inspire potential solutions for their regulation. Herein, the electrochemistry of the lithium/Li7La3Zr2O12‐electrolyte interface is elucidated by probing lithium deposition through the electrolyte in an anode‐free solid‐state battery in real time. Lithium plating is strongly affected by the geometry of the garnet‐type Li7La3Zr2O12 (LLZO) surface, where nonuniform/filamentary growth is triggered particularly at morphological defects. More importantly, lithium‐growth behavior significantly changes when the LLZO surface is modified with an artificial interlayer to produce regulated lithium depositions. It is shown that lithium‐growth kinetics critically depend on the nature of the interlayer species, leading to distinct lithium‐deposition morphologies. Subsequently, the dynamic role of the interlayer in battery operation is discussed as a buffer and seed layer for lithium redistribution and precipitation, respectively, in tailoring lithium deposition. These findings broaden the understanding of the electrochemical lithium‐plating process at the solid‐electrolyte/lithium interface, highlight the importance of exploring various interlayers as a new avenue for regulating the lithium‐metal anode, and also offer insight into the nature of lithium growth in anode‐free solid‐state batteries.  相似文献   

20.
There is a growing concern about the cyclability and safety, in particular, of the high‐energy density lithium–metal batteries. This concern is even greater for Li–O2 batteries because O2 that is transported from the cathode to the anode compartment, can exacerbate side reactions and dendrite growth of the lithium metal anode. The key to solving this dilemma lays in tailoring the solid electrolyte interphase (SEI) formed on the lithium metal anode in Li–O2 batteries. Here it is reported that a new electrolyte, formed from LiFSI as the salt and a mixture of tetraethylene glycol dimethyl ether and polymeric ionic liquid of P[C5O2NMA,11]FSI as the solvent, can produce a stable electrode (both cathode and anode)|electrolyte interface in Li–O2 batteries. Specifically, this new electrolyte, when in contact with lithium metal anodes, has the ability to produce a uniform SEI with high ionic conductivity for Li+ transport and desired mechanical property for suppression of dendritic lithium growth. Moreover, the electrolyte possesses a high oxidation tolerance that is very beneficial to the oxygen electrochemistry on the cathode of Li–O2 batteries. As a result, enhanced reversibility and cycle life are realized for the resultant Li–O2 batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号