首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport.  相似文献   

2.
Creutzfeldt–Jakob disease (CJD) is a neurodegenerative disorder characterized by the deposition of the pathological conformer (PrPCJD) of the host encoded cellular prion protein (PrPC). In genetic CJD associated with V210I or R208H PrP substitutions, the pathogenic role of mutant residues is still poorly understood. To understand how V210I or R208H PrP mutations facilitate the development of the disease, we determined by mass spectrometry the quantitative ratio of mutant/wild-type PrPCJD allotypes in brains from affected subjects. We found that the mutant PrPCJD allotypes moderately exceeds of 2- or 3-fold the amount of the wild-type counterpart suggesting that these mutations mainly exert their pathogenic effect on the onset of the pathogenic cascade.  相似文献   

3.
《Seminars in Virology》1996,7(3):181-187
Major advances have been made in the understanding of the molecular basis of phenotypic variability in human prion diseases over the last few years. Strong evidence indicates that a complex interaction between specific mutations and the polymorphic codon 129 of the prion protein gene (PRNP) underlies the genetic control of phenotypic expression in familial human prion diseases. Fatal familial insomnia (FFI) and a subtype of familial CJD (CJD178), two prion diseases with different clinico-pathological features, the same mutation at codon 178 ofPRNPbut a different amino acid at codon 129 of the mutantPRNPallele, represent the best characterized example of this complex interplay between thePRNPgenotype and phenotypic variability. Protein studies have subsequently shown that the different genotype of the mutant allele in FFI and CJD178results in the formation of two different protease-resistant prion proteins (PrPres) which differ in size and glycosylation. These biochemical characteristics of PrPresas well as differences among distinct brain regions in the timing and rate of PrPresdeposition and in the vulnerability to PrPresalso appear to be major determinants of phenotypic expression in human prion diseases.  相似文献   

4.
Fatal familial insomnia (FFI) is a subacute dementing illness originally described in 1986. The phenotypic characteristics of this disease include progressive untreatable insomnia, dysautonomia, endocrine and motor disorders, preferential hypometabolism in the thalamus as determined by PET scanning, and selective thalamic atrophy. These characteristics readily distinguish FFI from other previously described neurodegenerative conditions. Recently, FFI was shown to be linked to a mutation in the prion protein gene (PRNP) at codon 178, which results in the substitution of asparagine for aspartic acid. As such, FFI represents the most recent addition to the growing family of prion protein-related diseases. The mutation that results in FFI had previously been linked to a subtype of familial Creutzfeld-Jakob disease (178Asn CJD). The genotypic basis for the difference between FFI and 178AsnCJD lies in a polymorphism at codon 129 of the mutant prion protein gene: 129Met 178Asn results in FFI, 129Val 178Asn in CJD. The finding that the combination of a polymorphism and a single pathogenic mutation result in two distinct conditions represents a singnificant advance in our understanding of phenotypic variability.  相似文献   

5.
The absence of infectivity-associated, protease-resistant prion protein (PrPSc) in the brains of spontaneously sick transgenic (Tg) mice overexpressing PrP linked to Gerstmann–Sträussler Scheinker syndrome, and the failure of gene-targeted mice expressing such PrP to develop disease spontaneously, challenged the concept that mutant PrP expression led to spontaneous prion production. Here, we demonstrate that disease in overexpressor Tg mice is associated with accumulation of protease-sensitive aggregates of mutant PrP that can be immunoprecipitated by the PrPSc-specific monoclonal antibody designated 15B3. Whereas Tg mice expressing multiple transgenes exhibited accelerated disease when inoculated with disease-associated mutant PrP, Tg mice expressing mutant PrP at low levels failed to develop disease either spontaneously or following inoculation. These studies indicate that inoculated mutant PrP from diseased mice promotes the aggregation and accumulation of pre-existing pathological forms of mutant PrP produced as a result of transgene overexpression. Thus, while pathological mutant PrP possesses a subset of PrPSc characteristics, we now show that the attribute of prion transmission suggested by previous studies is more accurately characterized as disease acceleration.  相似文献   

6.
Production of cattle lacking prion protein   总被引:14,自引:0,他引:14  
Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.  相似文献   

7.
Creutzfeldt-Jakob disease (CJD) in Libyan Jews, linked to the E200K mutation in PRNP (E200KCJD), is the most prevalent of the inherited prion diseases. As other prion diseases, E200KCJD is characterized by the brain accumulation of PrP(Sc), a pathologic conformational isoform of a normal glycoprotein denominated PrP(C). To investigate whether the E200K mutation is enough to de novo confer PrP(Sc) properties to mutant PrP, as suggested by experiments in Chinese hamster ovary cells, we examined the biochemical behavior of E200KPrP in brains and fibroblasts from sporadic as well as homozygous and heterozygous E200KCJD patients, asymptomatic transgenic mice carrying the E200K mutation, as well as in normal and scrapie-infected mouse neuroblastoma cells expressing E200KPrP. E200KPrP was examined for protease sensitivity, solubility in detergents, releasibility by phosphoinositol phospholypase-C and localization in cholesterol enriched membrane microdomains (rafts). In all tissues except in brains of CJD patients and ScN2a cells, E200KPrP displayed properties similar to those of PrP(C). Our results indicate that the E200K mutation does not automatically convey the properties of PrP(Sc) to new PrP molecules. A conversion process occurs mainly in the prion disease affected brain, suggesting the presence of a tissue-specific or age-dependent factor, in accord with the late onset nature of inherited CJD.  相似文献   

8.
While the conversion of PrPC into PrPSc in the transmissible form of prion disease requires a preexisting PrPSc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrPST), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrPST as in TgMHu2ME199K mice, and “classical” PrPSc as in infectious prion diseases, coincide in the patient''s post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.  相似文献   

9.
Creutzfeldt-Jakob disease (CJD) is a transmissible neurodegenerative disease of humans caused by an unidentified infectious agent, the prion. To determine whether there was an involvement of the host-encoded prion protein (PrPc) in CJD development and prion propagation, mice heterozygous (PrP+/-) or homozygous (PrP-/-) for a disrupted PrP gene were established and inoculated with the mouse-adapted CJD agent. In keeping with findings of previous studies using other lines of PrP-less mice inoculated with scrapie agents, no PrP-/- mice showed any sign of the disease for 460 days after inoculation, while all of the PrP+/- and control PrP+/+ mice developed CJD-like symptoms and died. The incubation period for PrP+/- mice, 259 +/- 27 days, was much longer than that for PrP+/+ mice, 138 +/- 12 days. Propagation of the prion was barely detectable in the brains of PrP-/- mice and was estimated to be at a level at least 4 orders of magnitude lower than that in PrP+/+ mice. These findings indicate that PrPc is necessary for both the development of the disease and propagation of the prion in the inoculated mice. The proteinase-resistant PrP (PrPres) was undetectable in the brain tissues of the inoculated PrP-/- mice, while it accumulated in the affected brains of PrP+/+ and PrP+/- mice. Interestingly, the maximum level of PrPres in the brains of PrP+/- mice was about half of the level in the similarly affected brains of PrP+/+ mice, indicating that PrPres accumulation is restricted by the level of PrPc.  相似文献   

10.
Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp)-->AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. We confirmed the 178Asn mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178Asn reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Sträussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129Met/Val. Moreover, of five 178Asn individuals who are above age-at-onset range and who are well, two have 129Met and three have 129Met/Val, suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178Asn mutation.  相似文献   

11.
A nine-octapeptide insertion in the prion protein (PrP) gene is associated with an inherited form of human prion disease. Transgenic (Tg) mice that express the mouse homolog of this mutation (designated PG14) spontaneously accumulate in their brains an insoluble and weakly protease-resistant form of the mutant protein. This form (designated PG14(Spon)) is highly neurotoxic, but is not infectious in animal bioassays. In contrast, when Tg(PG14) mice are inoculated with the Rocky Mountain Laboratory (RML) strain of prions, they accumulate a different form of PG14 PrP (designated PG14(RML)) that is highly protease resistant and infectious in animal transmission experiments. We have been interested in characterizing the molecular properties of PG14(Spon) and PG14(RML), with a view to identifying features that determine two, apparently distinct properties of PrP aggregates: their infectivity and their pathogenicity. In this paper, we have subjected PG14(Spon) and PG14(RML) to a panel of assays commonly used to distinguish infectious PrP (PrP(Sc)) from cellular PrP (PrP(C)), including immobilized metal affinity chromatography, precipitation with sodium phosphotungstate, and immunoprecipitation with PrP(C)- and PrP(Sc)-specific antibodies. Surprisingly, we found that aggregates of PG14(Spon) and PG14(RML) behave identically to each other, and to authentic PrP(Sc), in each of these biochemical assays. PG14(Spon) however, in contrast to PG14(RML) and PrP(Sc), was unable to seed the misfolding of PrP(C) in an in vitro protein misfolding cyclic amplification reaction. Collectively, these results suggest that infectious and non-infectious aggregates of PrP share common structural features accounting for their toxicity, and that self-propagation of PrP involves more subtle molecular differences.  相似文献   

12.
Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). Disease is transmitted by the autocatalytic propagation of PrP(Sc) misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrP(Sc) generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrP(Sc) caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrP(Sc) properties.  相似文献   

13.
Shamsir MS  Dalby AR 《Proteins》2005,59(2):275-290
Fatal familial insomnia (FFI) and Creutzfeldt-Jakob disease (CJD) are associated to the same mutation at codon 178 but differentiate into clinicopathologically distinct diseases determined by this mutation and a naturally occurring methionine-valine polymorphism at codon 129 of the prion protein gene. It has been suggested that the clinical and pathological difference between FFI and CJD is caused by different conformations of the prion protein. Using molecular dynamics (MD), we investigated the effect of the mutation at codon 178 and the polymorphism at codon 129 on prion protein dynamics and conformation at normal and elevated temperatures. Four model structures were examined with a focus on their dynamics and conformational changes. The results showed differences in stability and dynamics between polymorphic variants. Methionine variants demonstrated a higher stability than valine variants. Elongation of existing beta-sheets and formation of new beta-sheets was found to occur more readily in valine polymorphic variants. We also discovered the inhibitory effect of proline residue on existing beta-sheet elongation.  相似文献   

14.
Huntington disease (HD) is one of several fatal neurodegenerative disorders associated with misfolded proteins. Here, we report a novel method for the sensitive detection of misfolded huntingtin (HTT) isolated from the brains of transgenic (Tg) mouse models of HD and humans with HD using an amyloid seeding assay (ASA), which is based on the propensity of misfolded proteins to act as a seed and shorten the nucleation-associated lag phase in the kinetics of amyloid formation in vitro. Using synthetic polyglutamine peptides as the substrate for amyloid formation, we found that partially purified misfolded HTT obtained from end-stage brain tissue of two Tg HD mouse models and brain tissue of post-mortem human HD patients was capable of specifically accelerating polyglutamine amyloid formation compared with unseeded reactions and controls. Alzheimer and prion disease brain tissues did not do so, demonstrating the specificity of the ASA. It is unclear whether early intermediates or later conformational species in the protein misfolding process act as seeds in the ASA for HD. However, we were able to detect misfolded protein in the brains of YAC128 mice early in disease pathogenesis (11 weeks of age), whereas large inclusion bodies have not been observed in the brains of these mice by histology until 78 weeks of age, much later in the pathogenic process. The sensitive detection of misfolded HTT protein early in the disease pathogenesis in the YAC128 Tg mouse model strengthens the argument for a causative role of protein misfolding in HD.  相似文献   

15.
Chronic wasting disease (CWD) is a fatal prion disease in deer and elk. Unique among the prion diseases, it is transmitted among captive and free-ranging animals. To facilitate studies of the biology of CWD prions, we generated five lines of transgenic (Tg) mice expressing prion protein (PrP) from Rocky Mountain elk (Cervus elaphus nelsoni), denoted Tg(ElkPrP), and two lines of Tg mice expressing PrP common to white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus), denoted Tg(DePrP). None of the Tg(ElkPrP) or Tg(DePrP) mice exhibited spontaneous neurologic dysfunction at more than 600 days of age. Brain samples from CWD-positive elk, white-tailed deer, and mule deer produced disease in Tg(ElkPrP) mice between 180 and 200 days after inoculation and in Tg(DePrP) mice between 300 and 400 days. One of eight cervid brain inocula transmitted disease to Tg(MoPrP)4053 mice overexpressing wild-type mouse PrP-A in approximately 540 days. Neuropathologic analysis revealed abundant PrP amyloid plaques in the brains of ill mice. Brain homogenates from symptomatic Tg(ElkPrP) mice produced disease in 120 to 190 days in Tg(ElkPrP) mice. In contrast to the Tg(ElkPrP) and Tg(DePrP) mice, Tg mice overexpressing human, bovine, or ovine PrP did not develop prion disease after inoculation with CWD prions from among nine different isolates after >500 days. These findings suggest that CWD prions from elk, mule deer, and white-tailed deer can be readily transmitted among these three cervid species.  相似文献   

16.
Several lines of evidence suggest that various cofactors may be required for prion replication. PrP binds to polyanions, and RNAs were shown to promote the conversion of PrP(C) into PrP(Sc) in vitro. In the present study, we investigated strain-specific differences in RNA requirement during in vitro conversion and the potential role of RNA as a strain-specifying component of infectious prions. We found that RNase treatment impairs PrP(Sc)-converting activity of 9 murine prion strains by protein misfolding cyclic amplification (PMCA) in a strain-specific fashion. While the addition of RNA restored PMCA conversion efficiency, the effect of synthetic polynucleotides or DNA was strain dependent, showing a different promiscuity of prion strains in cofactor utilization. The biological properties of RML propagated by PMCA under RNA-depleted conditions were compared to those of brain-derived and PMCA material generated in the presence of RNA. Inoculation of RNA-depleted RML in Tga20 mice resulted in an increased incidence of a distinctive disease phenotype characterized by forelimb paresis. However, this abnormal phenotype was not conserved in wild-type mice or upon secondary transmission. Immunohistochemical and cell panel assay analyses of mouse brains did not reveal significant differences between mice injected with the different RML inocula. We conclude that replication under RNA-depleted conditions did not modify RML prion strain properties. Our study cannot, however, exclude small variations of RML properties that would explain the abnormal clinical phenotype observed. We hypothesize that RNA molecules may act as catalysts of prion replication and that variable capacities of distinct prion strains to utilize different cofactors may explain strain-specific dependency upon RNA.  相似文献   

17.
Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrP(Sc)), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrP(C) exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrP(C) is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp(+/+)) mice with PrP-ablated mice (TgPrnp(o/o)) to generate Tg1D4(Prnp(o/o)) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp(+/+)) and Tg1D4(Prnp(o/o)) mice, suggesting that cyPrP and PrP(C) function independently in the disease state. Additionally, Tg1D4(Prnp(o/o)) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrP(Sc). We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrP(C) and the generation of typical prion disease.  相似文献   

18.
Transmissible spongiform encephalopathies (TSEs) are caused by an infectious agent that is thought to consist of only misfolded and aggregated prion protein (PrP). Unlike conventional micro-organisms, the agent spreads and propagates by binding to and converting normal host PrP into the abnormal conformer, increasing the infectious titre. Synthetic prions, composed of refolded fibrillar forms of recombinant PrP (rec-PrP) have been generated to address whether PrP aggregates alone are indeed infectious prions. In several reports, the development of TSE disease has been described following inoculation and passage of rec-PrP fibrils in transgenic mice and hamsters. However in studies described here we show that inoculation of rec-PrP fibrils does not always cause clinical TSE disease or increased infectious titre, but can seed the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). These data are reminiscent of the “prion-like” spread of misfolded protein in other models of neurodegenerative disease following inoculation of transgenic mice with pre-formed amyloid seeds. Protein misfolding, even when the protein is PrP, does not inevitably lead to the development of an infectious TSE disease. It is possible that most in vivo and in vitro produced misfolded PrP is not infectious and that only a specific subpopulation is associated with infectivity and neurotoxicity.  相似文献   

19.
Prion diseases are fatal neurodegenerative disorders caused by aberrant metabolism of the cellular prion protein (PrPC). In genetic forms of these diseases, mutations in the globular C-terminal domain are hypothesized to favor the spontaneous generation of misfolded PrP conformers (including the transmissible PrPSc form) that trigger downstream pathways leading to neuronal death. A mechanistic understanding of these diseases therefore requires knowledge of the quality control pathways that recognize and degrade aberrant PrPs. Here, we present comparative analyses of the biosynthesis, trafficking, and metabolism of a panel of genetic disease-causing prion protein mutants in the C-terminal domain. Using quantitative imaging and biochemistry, we identify a misfolded subpopulation of each mutant PrP characterized by relative detergent insolubility, inaccessibility to the cell surface, and incomplete glycan modifications. The misfolded populations of mutant PrPs were neither recognized by ER quality control pathways nor routed to ER-associated degradation despite demonstrable misfolding in the ER. Instead, mutant PrPs trafficked to the Golgi, from where the misfolded subpopulation was selectively trafficked for degradation in acidic compartments. Surprisingly, selective re-routing was dependent not only on a mutant globular domain, but on an additional lysine-based motif in the highly conserved unstructured N-terminus. These results define a specific trafficking and degradation pathway shared by many disease-causing PrP mutants. As the acidic lysosomal environment has been implicated in facilitating the conversion of PrPC to PrPSc, our identification of a mutant-selective trafficking pathway to this compartment may provide a cell biological basis for spontaneous generation of PrPSc in familial prion disease.  相似文献   

20.
How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs). Here, we report that motor behavioral deficits in Tg(PG14) mice emerge before neurodegeneration and are associated with defective glutamate exocytosis from granule neurons due to impaired calcium dynamics. We found that mutant PrP interacts with the voltage-gated calcium channel α(2)δ-1 subunit, which promotes the anterograde trafficking of the channel. Owing to ER retention of mutant PrP, α(2)δ-1 accumulates intracellularly, impairing delivery of the channel complex to the cell surface. Thus, mutant PrP disrupts cerebellar glutamatergic neurotransmission by reducing the number of functional channels in CGNs. These results link intracellular PrP retention to synaptic dysfunction, indicating new modalities of neurotoxicity and potential therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号