首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
All of the lactic streptococci examined except Streptococcus lactis ML8 fermented galactose to lactate, formate, acetate, and ethanol. The levels of pyruvate-formate lyase and lactate dehydrogenase were elevated and reduced, respectively, in galactose-grown cells compared with glucose- or lactose-grown cells. Reduced intracellular levels of both the lactate dehydrogenase activator (fructose, 1,6-diphosphate) and pyruvate-formate lyase inhibitors (triose phosphates) appeared to be the main factors involved in the diversion of lactate to the other products. S. lactis ML8 produced only lactate from galactose, apparently due to the maintenance of high intracellular levels of fructose 1,6-diphosphate and triose phosphates. The growth rates of all 10 Streptococcus cremoris strains examined decreased markedly with galactose concentrations below about 30 mM. This effect appeared to be correlated with uptake predominantly by the low-affinity galactose phosphotransferase system and initial metabolism via the D-tagatose 6-phosphate pathway. In contrast, with four of the five S. lactis strains examined, galactose uptake and initial metabolism involved more extensive use of the high-affinity galactose permease and Leloir pathway. With these strains the relative flux of galactose through the alternate pathways would depend on the exogenous galactose concentration.  相似文献   

4.
Streptococcus pneumoniae is one of the major causative agents of pneumonia, sepsis, meningitis and other morbidities. In spite of its heavy disease burden, surprisingly little is known about the mechanisms involved in the switch of life style, from commensal colonizer of the nasopharynx to invasive pathogen. In vitro experiments, and mouse models have shown that S. pneumoniae can be internalized by host cells, which coupled with intracellular vesicle transport through the cells, i.e. transcytosis, is suggested to be the first step of invasive disease. To further dissect the process of S. pneumoniae internalization, we chemically inhibited discrete parts of the cellular uptake system. We show that this invasion of the host cells was facilitated via both clathrin- and caveolae-mediated endocytosis. After internalization we demonstrated that the bulk of the internalized S. pneumoniae was killed in the lysosome. Interestingly, inhibition of the lysosome altered transcytosis dynamics as it resulted in an increase in the transport of the internalized bacteria out of the cells via the basal side. These results show that uptake of S. pneumoniae into host cells occurs via multiple pathways, as opposed to the often proposed view of invasion being dependent on specific, and singular receptor-mediated endocytosis. This indicates that the endothelium not only has a critical role as a physical barrier against S. pneumoniae in the blood stream, but also in degrading S. pneumonia cells that have adhered to, and invaded the endothelial cells.  相似文献   

5.
6.
Galactose-nonfermenting (Gal-) Streptococcus thermophilus TS2 releases galactose into the extracellular medium when grown in medium containing excess lactose. Starved and de-energized Gal- cells, however, could be loaded with galactose to levels approximately equal to the extracellular concentration (0 to 50 mM). When loaded cells were separated from the medium and resuspended in fresh broth containing 5 mM lactose, galactose efflux occurred. De-energized, galactose-loaded cells, resuspended in buffer or medium, accumulated [14C]lactose at a greater rate and to significantly higher intracellular concentrations than unloaded cells. Uptake of lactose by loaded cells was inhibited more than that by unloaded cells in the presence of extracellular galactose, indicating that a galactose gradient was involved in the exchange system. When de-energized, galactose-loaded cells were resuspended in carbohydrate-free medium at pH 6.7, a proton motive force (Δp) of 86 to 90 mV was formed, whereas de-energized, nonloaded cells maintained a Δp of about 56 mV. However, uptake of lactose by loaded cells occurred when the proton motive force was abolished by the addition of an uncoupler or in the presence of a proton-translocating ATPase inhibitor. These results support the hypothesis that galactose efflux in Gal-S. thermophilus is electrogenic and that the exchange reaction (lactose uptake and galactose efflux) probably occurs via an antiporter system.  相似文献   

7.

Background

There are hardly any data about the incidence, risk factors and outcomes of ICU-associated A.baumannii colonisation/infection in HIV-infected and uninfected persons from resource-poor settings like Africa.

Methods

We reviewed the case records of patients with A.baumannii colonisation/infection admitted into the adult respiratory and surgical ICUs in Cape Town, South Africa, from January 1 to December 31 2008. In contrast to colonisation, infection was defined as isolation of A.baumannii from any biological site in conjunction with a compatible clinical picture warranting treatment with antibiotics effective against A.baumannii.

Results

The incidence of A.baumannii colonisation/infection in 268 patients was 15 per 100 person-years, with an in-ICU mortality of 26.5 per 100 person-years. The average length of stay in ICU was 15 days (range 1–150). A.baumannii was most commonly isolated from the respiratory tract followed by the bloodstream. Independent predictors of mortality included older age (p = 0.02), low CD4 count if HIV-infected (p = 0.038), surgical intervention (p = 0.047), co-morbid Gram-negative sepsis (p = 0.01), high APACHE-II score (p = 0.001), multi-organ dysfunction syndrome (p = 0.012), and a positive blood culture for A.baumannii (p = 0.017). Of 21 A.baumannii colonised/infected HIV-positive persons those with clinical AIDS (CD4<200 cells/mm3) had significantly higher in-ICU mortality and were more likely to have a positive blood culture.Conclusion In this resource-poor setting A.baumannii infection in critically ill patients is common and associated with high mortality. HIV co-infected patients with advanced immunosuppression are at higher risk of death.  相似文献   

8.
IL-36 cytokines are members of the IL-1 family of cytokines that stimulate dendritic cells and T cells leading to enhanced T helper 1 responses in vitro and in vivo; however, their role in host defense has not been fully addressed thus far. The objective of this study was to examine the role of IL-36R signaling in the control of mycobacterial infection, using models of systemic attenuated M. bovis BCG infection and virulent aerogenic M. tuberculosis infection. IL-36γ expression was increased in the lung of M. bovis BCG infected mice. However, IL-36R deficient mice infected with M. bovis BCG showed similar survival and control of the infection as compared to wild-type mice, although their lung pathology and CXCL1 response were transiently different. While highly susceptible TNF-α deficient mice succumbed with overwhelming M. tuberculosis infection, and IL-1RI deficient mice showed intermediate susceptibility, IL-36R-deficient mice controlled the infection, with bacterial burden, lung inflammation and pathology, similar to wild-type controls. Therefore, IL-36R signaling has only limited influence in the control of mycobacterial infection.  相似文献   

9.
Streptococcus thermophilus is unable to metabolize the galactose moiety of lactose. In this paper, we show that a transformant of S. thermophilus SMQ-301 expressing Streptococcus salivarius galK and galM was able to grow on galactose and expelled at least twofold less galactose into the medium during growth on lactose.  相似文献   

10.
11.
The molecular machinery that regulates the entry and survival of Yersinia pestis in host macrophages is poorly understood. Here, we report the development of automated high-content imaging assays to quantitate the internalization of virulent Y. pestis CO92 by macrophages and the subsequent activation of host NF-κB. Implementation of these assays in a focused chemical screen identified kinase inhibitors that inhibited both of these processes. Rac-2-ethoxy-3 octadecanamido-1-propylphosphocholine (a protein Kinase C inhibitor), wortmannin (a PI3K inhibitor), and parthenolide (an IκB kinase inhibitor), inhibited pathogen-induced NF-κB activation and reduced bacterial entry and survival within macrophages. Parthenolide inhibited NF-κB activation in response to stimulation with Pam3CSK4 (a TLR2 agonist), E. coli LPS (a TLR4 agonist) or Y. pestis infection, while the PI3K and PKC inhibitors were selective only for Y. pestis infection. Together, our results suggest that phagocytosis is the major stimulus for NF-κB activation in response to Y. pestis infection, and that Y. pestis entry into macrophages may involve the participation of protein kinases such as PI3K and PKC. More importantly, the automated image-based screening platform described here can be applied to the study of other bacteria in general and, in combination with chemical genetic screening, can be used to identify host cell functions facilitating the identification of novel antibacterial therapeutics.  相似文献   

12.
13.
Galactose-negative mutants of the group H Streptococcus strain Challis were obtained by treatment with nitrosoguanidine. Enzyme assays of extracts of these mutants revealed that 12 of the mutants were lacking one of the enzymes of the Leloir pathway. Thus, the Leloir pathway is the major means of galactose metabolism in strain Challis. In addition, uridyl diphosphate galactose pyrophosphorylase, a permease function, and at least one other function are required for the utilization of galactose. The enzymes of the Leloir pathway are induced by galactose and fucose; no compounds which act as repressors of these enzymes have been found, although the system appears to be sensitive to catabolite repression. Transformation was used to map the mutants. The genes for galactose-1-phosphate uridyl transferase and glucose-4-epimerase appear to be closely linked. Within the transferase gene, six mutations have been mapped. The permease function and the undetermined functions are not linked to the Leloir pathway.  相似文献   

14.
New World hantaviruses can cause hantavirus cardiopulmonary syndrome with high mortality in humans. Distinct virus species are hosted by specific rodent reservoirs, which also serve as the vectors. Although regional spillover has been documented, it is unknown whether rodent reservoirs are competent for infection by hantaviruses that are geographically separated, and known to have related, but distinct rodent reservoir hosts. We show that Andes virus (ANDV) of South America, carried by the long tailed pygmy rice rat (Oligoryzomys longicaudatus), infects and replicates in vitro and in vivo in the deer mouse (Peromyscus maniculatus), the reservoir host of Sin Nombre virus (SNV), found in North America. In experimentally infected deer mice, viral RNA was detected in the blood, lung, heart and spleen, but virus was cleared by 56 days post inoculation (dpi). All of the inoculated deer mice mounted a humoral immune response by 14 dpi, and produced measurable amounts of neutralizing antibodies by 21 dpi. An up-regulation of Ccl3, Ccl4, Ccl5, and Tgfb, a strong CD4+ T-cell response, and down-regulation of Il17, Il21 and Il23 occurred during infection. Infection was transient with an absence of clinical signs or histopathological changes. This is the first evidence that ANDV asymptomatically infects, and is immunogenic in deer mice, a non-natural host species of ANDV. Comparing the immune response in this model to that of the immune response in the natural hosts upon infection with their co-adapted hantaviruses may help clarify the mechanisms governing persistent infection in the natural hosts of hantaviruses.  相似文献   

15.
16.
《Autophagy》2013,9(4):310-311
Cytotoxic necrotizing factor 1 is a bacterial protein toxin from Escherichia coli that is able to activate the Rho GTPases and to hinder apoptosis and mitotic catastrophe. Upon exposure to toxin, cells undergo a complex framework of changes, including cytoskeleton remodeling and multinucleation. These cells also show a high survival rate for long periods of time and improve both their macropinocytotic scavenging activities and microautophagy. Only at the very end, probably when “feeding” materials are exhausted, they do these cells die by autophagy. Taking into account the complex role of bacterial protein toxins in the infectious processes, we indicate the CNF1 activity as a Janus-faced paradigm of those bacteria that hijack cell fate to their own benefit. This could somehow be linked to the hypothesized connection between certain bacterial toxins and cancer onset.

Addendum to:

Is the Rac GTPase-Activating Toxin CNF1 a Smart Hijacker of Host Cell Fate?

W. Malorni and C. Fiorentini

FASEB J 2006; 20:606-9  相似文献   

17.
18.
19.
Wild waterfowl, particularly dabbling ducks such as mallards (Anas platyrhynchos), are considered the main reservoir of low-pathogenic avian influenza viruses (LPAIVs). They carry viruses that may evolve and become highly pathogenic for poultry or zoonotic. Understanding the ecology of LPAIVs in these natural hosts is therefore essential. We assessed the clinical response, viral shedding and antibody production of juvenile mallards after intra-esophageal inoculation of two LPAIV subtypes previously isolated from wild congeners. Six ducks, equipped with data loggers that continually monitored body temperature, heart rate and activity, were successively inoculated with an H7N7 LPAI isolate (day 0), the same H7N7 isolate again (day 21) and an H5N2 LPAI isolate (day 35). After the first H7N7 inoculation, the ducks remained alert with no modification of heart rate or activity. However, body temperature transiently increased in four individuals, suggesting that LPAIV strains may have minor clinical effects on their natural hosts. The excretion patterns observed after both re-inoculations differed strongly from those observed after the primary H7N7 inoculation, suggesting that not only homosubtypic but also heterosubtypic immunity exist. Our study suggests that LPAI infection has minor clinically measurable effects on mallards and that mallard ducks are able to mount immunological responses protective against heterologous infections. Because the transmission dynamics of LPAIVs in wild populations is greatly influenced by individual susceptibility and herd immunity, these findings are of high importance. Our study also shows the relevance of using telemetry to monitor disease in animals.  相似文献   

20.
Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied. Recent works indicate that GAS infection is recognized by multiple extracellular and intracellular receptors and activates cell signalling via discrete pathways. Host leukocyte receptor binding to GAS-derived products mediates release of inflammatory mediators associated with severe GAS disease. GAS induces divergent phagocyte programmed cell death responses and has inflammatory implications. Epithelial cell apoptotic and autophagic components are mobilized by GAS infection, but can be subverted to ensure bacterial survival. Examination of host interactions with GAS and consequences of GAS infection in the context of cellular receptors responsible for GAS recognition, inflammatory mediator responses, and cell death mechanisms, highlights potential avenues for diagnostic and therapeutic intervention. Understanding the molecular and cellular basis of host symptoms during severe GAS disease will assist the development of improved treatment regimens for this formidable pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号