首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
4.
The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.  相似文献   

5.
6.
Orchestrated regulation of neuronal migration and morphogenesis is critical for neuronal development and establishment of functional circuits, but its regulatory mechanism is incompletely defined. We established and analyzed mice with neural-specific knock-out of Trio, a guanine nucleotide exchange factor with multiple guanine nucleotide exchange factor domains. Knock-out mice showed defective cerebella and severe signs of ataxia. Mutant cerebella had no granule cells in the internal granule cell layer due to aberrant granule cell migration as well as abnormal neurite growth. Trio-deficient granule cells showed reduced extension of neurites and highly branched and misguided processes with perturbed stabilization of actin and microtubules. Trio deletion caused down-regulation of the activation of Rac1, RhoA, and Cdc42, and mutant granule cells appeared to be unresponsive to neurite growth-promoting molecules such as Netrin-1 and Semaphorin 6A. These results suggest that Trio may be a key signal module for the orchestrated regulation of neuronal migration and morphogenesis during cerebellar development. Trio may serve as a signal integrator decoding extrinsic signals to Rho GTPases for cytoskeleton organization.  相似文献   

7.
This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.  相似文献   

8.
The appropriate regulation of dendrite, spine, and synapse morphogenesis in neurons both during and after development is critical for the formation and maintenance of neural circuits. It is becomingly increasingly clear that the cadherin–catenin cell adhesion complex, a complex that has been widely studied in epithelia, regulates neuronal morphogenesis. More interestingly, the catenins, cytosolic proteins that bind to cadherins, regulate multiple aspects of neuronal morphogenesis including dendrite, spine, and synapse morphogenesis and plasticity, both independent of and dependent on their ability to bind cadherins. In this review, we examine some of the more recent and exciting studies that implicate individual catenins in various aspects of neuronal morphogenesis and plasticity.  相似文献   

9.
We have identified a novel gene, USP15, encoding a human ubiquitin-specific protease (USP). The USP15 protein consists of 952 amino acids with a predicted molecular mass of 109.2 kDa and contains the highly conserved Cys and His boxes present in all members of the UBP family of deubiquitinating enzymes. USP15 shares 60.5% sequence identity and 76% sequence similarity with the human homolog (UNP/Unph/USP4) of the mouse Unp proto-oncogene. Recombinant USP15 demonstrated ubiquitin-specific protease activity against engineered linear fusions of ubiquitin to beta-galactosidase and glutathione S-transferase. USP15 can also cleave the ubiquitin-proline bond, a property previously unique to Unp/UNP. Chromosomal mapping by fluorescence in situ hybridization and radiation hybrid analyses localized the USP15 gene to chromosome band 12q14, a different location than that of UNP (3p21.3). Analysis of expressed sequence tag databases reveals evidence of alternate polyadenylation sites in the USP15 gene and also indicates that the gene may possess an exon/intron structure similar to that of the Unp gene, suggesting they have descended from a common ancestor. A systematic nomenclature for the human USPs is proposed.  相似文献   

10.
Altered dendritic arborization contributes to numerous physiological processes including synaptic plasticity, behavior, learning and memory, and is one of the most consistent neuropathologic conditions found in a number of mental retardation disorders, schizophrenia, and neurodegenerative disease. COP9 signalosome (CSN), an evolutionarily conserved regulator of the Cullin-based ubiquitin ligases that act in the proteasome pathway, has been found associated with diverse debilitating syndromes, suggesting that CSN may be involved in regulation of dendritic arborization. However, the mechanism of this control, if it exists, is unknown. To address whether the CSN pathway plays a role in dendrites, we used a simple and genetically tractable model, Drosophila larval peripheral nervous system. Our model study identified the COP9 signalosome as the key and multilayer regulator of dendritic arborization. CSN is responsible for shaping the entire dendritic tree through both stimulating and then repressing dendritic branching. We identified that CSN exerts its dualistic function via control of different Cullins. In particular, CSN stimulates dendritic branching through Cullin1, and inhibits it via control of Cullin3 function. We also identified that Cullin1 acts in neurons with the substrate-specific F-box protein Slimb to target the Cubitus interruptus protein for degradation.  相似文献   

11.
Ubiquitinating enzymes catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action. Ubiquitin-specific protease 4 (USP4) is a member of the ubiquitin-specific protease (USP) family of DUBs that has a role in spliceosome regulation. In the present study, we demonstrated that USP4 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant up-regulation of USP4 in neurons adjacent to the hematoma following ICH by the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing USP4 level was found to be accompanied by the up-regulation of active caspase-3, γH2AX, Bax, and decreased expression of Bcl-2. In addition, USP4 co-localized well with γH2AX in the nucleus in the ICH model and hemin-induced apoptosis model. Moreover, in vitro study, knocking down USP4 by USP4-specific siRNA in PC12 cells reduced active caspase-3 expression. All these results above suggested that USP4 may be involved in neuronal apoptosis after ICH.  相似文献   

12.
Cells of Neurospora crassa strain 74A, grown on sucrose for 12 h and transferred to a medium containing protein as sole carbon source, would not produce exocellular protease in significant amounts. When a filtrate from a culture induced to make protease by normal growth on a medium containing protein as principal carbon source was added to an exponential-phase culture in protein medium, exocellular protease was made in amounts similar to those made during normal induction. The material in the culture filtrate that participated in the induction process was identified as protease by its heat lability, molecular weight, and the dependence of induction rate on units of proteolytic activity added to the exponential-phase culture. Induction of the formation of exocellular protease by exponential-phase cells appears to require a protein substrate, added proteolytic activity, and protein synthesis. The protease produced by induced exponential-phase cells was as efficient in promoting induction as normally induced enzyme, whereas constitutive intracellular enzyme was only 50% as efficient. The bacterial protease thermolysin was able to induce exocellular protease at 90.7% of the rate observed with added N. crassa exocellular protease.  相似文献   

13.
14.
Sphingolipid (SL) biosynthesis is negatively regulated by the highly conserved endoplasmic reticulum-localized Orm family proteins. Defective SL synthesis in Saccharomyces cerevisiae leads to increased phosphorylation and inhibition of Orm proteins by the kinase Ypk1. Here we present evidence that the yeast morphogenesis checkpoint kinase, Swe1, regulates SL biosynthesis independent of the Ypk1 pathway. Deletion of the Swe1 kinase renders mutant cells sensitive to serine palmitoyltransferase inhibition due to impaired sphingoid long-chain base synthesis. Based on these data and previous results, we suggest that Swe1 kinase perceives alterations in SL homeostasis, activates SL synthesis, and may thus represent the missing regulatory link that controls the SL rheostat during the cell cycle.  相似文献   

15.
胚胎肾发育最初阶段是中肾导管尾端在胶质细胞源性神经营养因子诱导下向背侧长出输尿管芽,而后成纤维细胞生长因子、肝细胞生长因子、骨形成蛋白、基质金属蛋白酶、整合素和粘附分子相继表达,作用于输尿管芽和间充质细胞,诱导分支形态发生,包括输尿管芽向间充质侵入、延伸以及间充质细胞向上皮转化。上述这些分子在功能上存在部分重叠与拮抗,维持细胞增殖和分化的平衡,从而保证输尿管芽形成正常的分支结构。本文对肾脏发育时期分支形态发生的调控因素进行综述。  相似文献   

16.
17.
Secretion of anti-serpin B13 autoantibodies in young diabetes-prone nonobese diabetic mice is associated with reduced inflammation in pancreatic islets and a slower progression to autoimmune diabetes. Injection of these mice with a monoclonal antibody (mAb) against serpin B13 also leads to fewer inflammatory cells in the islets and more rapid recovery from recent-onset diabetes. The exact mechanism by which anti-serpin activity is protective remains unclear. We found that serpin B13 is expressed in the exocrine component of the mouse pancreas, including the ductal cells. We also found that anti-serpin B13 mAb blocked the inhibitory activity of serpin B13, thereby allowing partial preservation of the function of its target protease. Consistent with the hypothesis that anti-clade B serpin activity blocks the serpin from binding, exposure to exogenous anti-serpin B13 mAb or endogenous anti-serpin B13 autoantibodies resulted in cleavage of the surface molecules CD4 and CD19 in lymphocytes that accumulated in the pancreatic islets and pancreatic lymph nodes but not in the inguinal lymph nodes. This cleavage was inhibited by an E64 protease inhibitor. Consequently, T cells with the truncated form of CD4 secreted reduced levels of interferon-γ. We conclude that anti-serpin antibodies prevent serpin B13 from neutralizing proteases, thereby impairing leukocyte function and reducing the severity of autoimmune inflammation.  相似文献   

18.
粘细菌的多细胞形态发生及其分子调控   总被引:13,自引:0,他引:13  
粘细菌的多细胞形态发生是粘细菌细胞社会性行为的主要表现.包括细胞有序聚集、细胞自溶、子实体发育和粘孢子的分化形成等.粘细菌的形态发生过程涉及复杂的信号系统和调控,与真核生物具有较大的相似性.是研究原核生物细胞分化发育以及生物进化的重要模式材料.  相似文献   

19.
20.
Epithelial Na+ channels facilitate the transport of Na+ across high resistance epithelia. Proteolytic cleavage has an important role in regulating the activity of these channels by increasing their open probability. Specific proteases have been shown to activate epithelial Na+ channels by cleaving channel subunits at defined sites within their extracellular domains. This minireview addresses the mechanisms by which proteases activate this channel and the question of why proteolysis has evolved as a mechanism of channel activation.Many ion channels are silent at rest and are activated in response to a variety of factors, including membrane potential, external ligands, and intracellular signaling processes. The ENaC2 has evolved as a channel that is thought to reside primarily in an active state, facilitating the bulk movement of Na+ out of renal tubular or airway lumens. The regulated insertion and retrieval of channels at the plasma membrane have important roles in modulating ENaC-dependent Na+ transport (1). A number of factors also have a role in regulating ENaC activity via changes in channel Po or gating. In this regard, it has become increasingly apparent that proteolysis of ENaC subunits has a key role in this process (2). This minireview addresses several questions regarding the role of ENaC subunit proteolysis in regulating channel gating. (i) Where are ENaC subunits cleaved? (ii) Which proteases mediate ENaC cleavage? (iii) Why are channels activated by proteolysis? (iv) Is proteolysis responsible, in part, for the highly variable channel Po that has been noted for ENaC? (v) Why have ENaCs evolved as channels that require proteolysis for activation?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号