首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Protein diffusion in lipid membranes is a key aspect of many cellular signaling processes. To quantitatively describe protein diffusion in membranes, several competing theoretical models have been proposed. Among these, the Saffman-Delbrück model is the most famous. This model predicts a logarithmic dependence of a protein’s diffusion coefficient on its inverse hydrodynamic radius (D ∝ ln 1/R) for small radius values. For large radius values, it converges toward a D ∝ 1/R scaling. Recently, however, experimental data indicate a Stokes-Einstein-like behavior (D ∝ 1/R) of membrane protein diffusion at small protein radii. In this study, we investigate protein diffusion in black lipid membranes using dual-focus fluorescence correlation spectroscopy. This technique yields highly accurate diffusion coefficients for lipid and protein diffusion in membranes. We find that despite its simplicity, the Saffman-Delbrück model is able to describe protein diffusion extremely well and a Stokes-Einstein-like behavior can be ruled out.  相似文献   

2.
Interactions of monomeric alpha-synuclein (αS) with lipid membranes have been suggested to play an important role in initiating aggregation of αS. We have systematically analyzed the distribution and self-assembly of monomeric αS on supported lipid bilayers. We observe that at protein/lipid ratios higher than 1:10, αS forms micrometer-sized clusters, leading to observable membrane defects and decrease in lateral diffusion of both lipids and proteins. An αS deletion mutant lacking amino-acid residues 71–82 binds to membranes, but does not observably affect membrane integrity. Although this deletion mutant cannot form amyloid, significant amyloid formation is observed in the wild-type αS clusters. These results suggest that the process of amyloid formation, rather than binding of αS on membranes, is crucial in compromising membrane integrity.  相似文献   

3.
Studies have been made on the temperature dependence of both the hydraulic conductivity, Lp, and the THO diffusion coefficient, ω, for a series of cellulose acetate membranes (CA) of varying porosity. A similar study was also made of a much less polar cellulose triacetate membrane (CTA). The apparent activation energies, Ea, for diffusion across CA membranes vary with porosity, being 7.8 kcal/mole for the nonporous membrane and 5.5 kcal/mole for the most porous one. Ea for diffusion across the less polar CTA membrane is smaller than Ea for the CA membrane of equivalent porosity. Classical viscous flow, in which the hydraulic conductivity is inversely related to bulk water viscosity, has been demonstrated across membranes with very small equivalent pores. Water-membrane interactions, which depend upon both chemical and geometrical factors are of particular importance in diffusion. The implication of these findings for the interpretation of water permeability experiments across biological membranes is discussed.  相似文献   

4.
A method for transferring a lipid monolayer from an air-water interface to an alkylated glass slide is described. Specific antibodies bind tightly to lipid haptens contained in these monolayers on the glass slides. We conclude that the polar head groups of the lipids face the aqueous phase. A monolayer containing a fluorescent lipid was used to show that the monolayer is homogeneous as observed with an epifluorescence microscope. A periodic pattern photobleaching technique was used to measure the lateral diffusion of this fluorescent lipid probe in monolayers composed of dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine. Different regions of the pressure-area isotherms of the monolayers at the air-water interface can be correlated with the diffusion of the fluorescent probe molecules on the monolayer-coated glass slide. Monolayers derived from the so-called “solid-condensed” state of a monolayer at the air-water interface showed a very low probe diffusion coefficient in this monolayer when placed on a glass slide, D ≤ 10-10 cm2/s. Monolayers derived from the “liquid condensed/liquid expanded” (LC/LE) region of the monolayer isotherms at the air-water interface showed rapid diffusion (D > 10-8 cm2/s) when these same monolayers were observed on an alkylated glass slide. The monolayers attached to the glass slide appear to be homogeneous when derived from monolayers in the LC/LE region of monolayers at the air-water interface. There is no major variation of the diffusion coefficient of a fluorescent lipid probe when this diffusion is measured on a lipid monolayer on a glass slide, for monolayers derived from various regions of the LC/LE monolayers at the air-water interface. This is consistent with the view that the LC/LE region is most likely a single fluid phase. Monolayers supported on a planar glass substrate are of much potential interest for biophysical and biochemical studies of the interactions between model membranes and cellular membranes, and for physical chemical studies relating the properties of lipid monolayers to the properties of lipid bilayers.  相似文献   

5.
Diffusion of lipids and proteins within the cell membrane is essential for numerous membrane-dependent processes including signaling and molecular interactions. It is assumed that the membrane-associated cytoskeleton modulates lateral diffusion. Here, we use a minimal actin cortex to directly study proposed effects of an actin meshwork on the diffusion in a well-defined system. The lateral diffusion of a lipid and a protein probe at varying densities of membrane-bound actin was characterized by fluorescence correlation spectroscopy (FCS). A clear correlation of actin density and reduction in mobility was observed for both the lipid and the protein probe. At high actin densities, the effect on the protein probe was ∼3.5-fold stronger compared to the lipid. Moreover, addition of myosin filaments, which contract the actin mesh, allowed switching between fast and slow diffusion in the minimal system. Spot variation FCS was in accordance with a model of fast microscopic diffusion and slower macroscopic diffusion. Complementing Monte Carlo simulations support the analysis of the experimental FCS data. Our results suggest a stronger interaction of the actin mesh with the larger protein probe compared to the lipid. This might point toward a mechanism where cortical actin controls membrane diffusion in a strong size-dependent manner.  相似文献   

6.
Aquaporin-1 (AQP1) is an integral membrane protein that facilitates osmotic water transport across cell plasma membranes in epithelia and endothelia. AQP1 has no known specific interactions with cytoplasmic or membrane proteins, but its recovery in a detergent-insoluble membrane fraction has suggested possible raft association. We tracked the membrane diffusion of AQP1 molecules labeled with quantum dots at an engineered external epitope at frame rates up to 91 Hz and over times up to 6 min. In transfected COS-7 cells, >75% of AQP1 molecules diffused freely over ∼7 μm in 5 min, with diffusion coefficient, D1-3 ∼ 9 × 10−10 cm2/s. In MDCK cells, ∼60% of AQP1 diffused freely, with D1-3 ∼ 3 × 10−10 cm2/s. The determinants of AQP1 diffusion were investigated by measurements of AQP1 diffusion following skeletal disruption (latrunculin B), lipid/raft perturbations (cyclodextrin and sphingomyelinase), and bleb formation. We found that cytoskeletal disruption had no effect on AQP1 diffusion in the plasma membrane, but that diffusion was increased greater than fourfold in protein de-enriched blebs. Cholesterol depletion in MDCK cells greatly restricted AQP1 diffusion, consistent with the formation of a network of solid-like barriers in the membrane. These results establish the nature and determinants of AQP1 diffusion in cell plasma membranes and demonstrate long-range nonanomalous diffusion of AQP1, challenging the prevailing view of universally anomalous diffusion of integral membrane proteins, and providing evidence against the accumulation of AQP1 in lipid rafts.  相似文献   

7.
The temperature dependence of permeation across human red cell membranes has been determined for a series of hydrophilic and lipophilic solutes, including urea and two methyl substituted derivatives, all the straight-chain amides from formamide through valeramide and the two isomers, isobutyramide and isovaleramide. The temperature coefficient for permeation by all the hydrophilic solutes is 12 kcal mol-1 or less, whereas that for all the lipophilic solutes is 19 kcal mol-1 or greater. This difference is consonant with the view that hydrophilic molecules cross the membrane by a path different from that taken by the lipophilic ones. The thermodynamic parameters associated with lipophile permeation have been studied in detail. ΔG is negative for adsorption of lipophilic amides onto an oil-water interface, whereas it is positive for transfer of the polar head from the aqueous medium to bulk lipid solvent. Application of absolute reaction rate theory makes it possible to make a clear distinction between diffusion across the water-red cell membrane interface and diffusion within the membrane. Diffusion coefficients and apparent activation enthalpies and entropies have been computed for each process. Transfer of the polar head from the solvent into the interface is characterized by ΔG = 0 kcal mol-1 and ΔS negative, whereas both of these parameters have large positive values for diffusion within the membrane. Diffusion within the membrane is similar to what is expected for diffusion through a highly associated viscous fluid.  相似文献   

8.
The State of Water in Human and Dog Red Cell Membranes   总被引:8,自引:8,他引:0  
The apparent activation energy for the water diffusion permeability coefficient, Pd, across the red cell membrane has been found to be 4.9 ± 0.3 kcal/mole in the dog and 6.0 ± 0.2 kcal/mole in the human being over the temperature range, 7° to 37°C. The apparent activation energy for the hydraulic conductivity, Lp, in dog red cells has been found to be 3.7 ± 0.4 kcal/mole and in human red cells, 3.3 ± 0.4 kcal/mole over the same temperature range. The product of Lp and the bulk viscosity of water, η, was independent of temperature for both dog and man which indicates that the geometry of the red cell membrane is not temperature-sensitive over our experimental temperature range in either species. In the case of the dog, the apparent activation energy for diffusion is the same as that for self-diffusion of water, 4.6–4.8 kcal/mole, which indicates that the process of water diffusion across the dog red cell membrane is the same as that in free solution. The slightly, but significantly, higher activation energy for water diffusion in human red cells is consonant with water-membrane interaction in the narrower equivalent pores characteristic of these cells. The observation that the apparent activation energy for hydraulic conductivity is less than that for water diffusion across the red cell membrane is characteristic of viscous flow and suggests that the flow of water across the membranes of these red cells under an osmotic pressure gradient is a viscous process.  相似文献   

9.
All living organisms adapt their membrane lipid composition in response to changes in their environment or diet. These conserved membrane‐adaptive processes have been studied extensively. However, key concepts of membrane biology linked to regulation of lipid composition including homeoviscous adaptation maintaining stable levels of membrane fluidity, and gel‐fluid phase separation resulting in domain formation, heavily rely upon in vitro studies with model membranes or lipid extracts. Using the bacterial model organisms Escherichia coli and Bacillus subtilis, we now show that inadequate in vivo membrane fluidity interferes with essential complex cellular processes including cytokinesis, envelope expansion, chromosome replication/segregation and maintenance of membrane potential. Furthermore, we demonstrate that very low membrane fluidity is indeed capable of triggering large‐scale lipid phase separation and protein segregation in intact, protein‐crowded membranes of living cells; a process that coincides with the minimal level of fluidity capable of supporting growth. Importantly, the in vivo lipid phase separation is not associated with a breakdown of the membrane diffusion barrier function, thus explaining why the phase separation process induced by low fluidity is biologically reversible.  相似文献   

10.
Recent evidence supports the hypothesis that the oligomers formed by the β-amyloid peptide early in its aggregation process are neurotoxic and may feature in Alzheimer’s disease. Although the mechanism underlying this neurotoxicity remains unclear, interactions of these oligomers with neuronal membranes are believed to be involved. Identifying the neurotoxic species is challenging because β-amyloid peptides form oligomers at very low physiological concentrations (nM), and these oligomers are highly heterogeneous and metastable. Here, we report the use of single-molecule imaging techniques to study the interactions between β-amyloid (1–40) peptides and supported synthetic model anionic lipid membranes. The evolution of the β-amyloid species on the membranes was monitored for up to several days, and the results indicate an initial tight, uniform, binding of β-amyloid (1–40) peptides to the lipid membranes, followed by oligomer formation in the membrane. At these low concentrations, the behavior at early times during the formation of small oligomers is interpreted qualitatively in terms of the two-state model proposed by H. W. Huang for the interaction between amphipathic peptides and membranes. However, the rate of oligomer formation in the membrane and their size are highly dependent on the concentrations of β-amyloid (1–40) peptides in aqueous solution, suggesting two different pathways of oligomer formation, which lead to drastically different species in the membrane and a departure from the two-state model as the concentration increases.  相似文献   

11.
A protein spin label and lipid spin probes were used to study the temperature-dependent motion of protein and lipid, respectively, in barley (Hordeum vulgare L. cv Conquest) root plasma membrane-enriched microsomes. Using membranes from seedlings grown at 20°C, the temperature-dependence of the relative motion of membrane surface spin probes and a spin label covalently attached to membrane proteins suggested abrupt changes in the lipid and protein mobilities at about 12°C. Spin probe spin-spin exchange broadening and fluorescent probe eximer formation indicated apparent temperature-induced alterations in probe lateral diffusion within the membrane at about 12 to 14°C. The results suggest the presence of temperature-induced quasicrystalline lipid clusters which may influence the activity of membrane-bound enzymes.  相似文献   

12.
Using a coarse-grained lipid and peptide model, we show that the free energy stabilization of amyloid-β in heterogeneous lipid membranes is predicted to have a dependence on asymmetric distributions of cholesterol compositions across the membrane leaflets. We find that a highly asymmetric cholesterol distribution that is depleted on the exofacial leaflet but enhanced on the cytofacial leaflet of the model lipid membrane thermodynamically favors membrane retention of a fully embedded Aβ peptide. However, in the case of cholesterol redistribution that increases concentration of cholesterol on the exofacial layer, typical of aging or Alzheimer’s disease, the free energy favors peptide extrusion of the highly reactive N-terminus into the extracellular space that may be vulnerable to aggregation, oligomerization, or deleterious oxidative reactivity.  相似文献   

13.
To obtain insight into the potential role of the cytoskeleton on lipid mixing behavior in plasma membranes, the current study explores the influence of physisorbed actin filaments (F-actin) on lipid–lipid phase separations in planar model membrane systems containing raft-mimicking lipid mixtures of well-defined compositions using a complementary experimental approach of epifluorescence microscopy, fluorescence anisotropy, wide-field single molecule fluorescence microscopy, and interfacial rheometry. In particular, we have explored the impact of F-actin on cholesterol (CHOL)–phospholipid interactions, which are considered important for the formation of CHOL-enriched lipid raft domains. By using epifluorescence microscopy, we show that physisorbed filamentous actin (F-actin) alters the domain size of lipid–lipid phase separations in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) and cholesterol (CHOL). In contrast, no actin-induced modification in lipid–lipid phase separations is observed in the absence of POPS or when POPS is replaced by another anionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). Wide-field single molecule fluorescence microscopy on binary lipid mixtures indicate that PS and PG lipids show similar electrostatic interactions with physisorbed actin filaments. Complementary fluorescence anisotropy experiments on binary PS lipid-containing lipid mixtures are provided to illustrate the actin-induced segregation of anionic lipids. The similarity of electrostatic interactions between actin and both anionic lipids suggests that the observed differences in actin-mediated perturbations of lipid phase separations are caused by distinct PS lipid–CHOL versus PG lipid–CHOL interactions. We hypothesize that the actin cytoskeleton and some peripheral membrane proteins may alter lipid–lipid phase separations in plasma membranes in a similar way by interacting with PS lipids.  相似文献   

14.
Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes “artificial plasma membrane mimicking” (“PMm”) vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.  相似文献   

15.
There is increasing interest in supported membranes as models of biological membranes and as a physiological matrix for studying the structure and function of membrane proteins and receptors. A common problem of protein-lipid bilayers that are directly supported on a hydrophilic substrate is nonphysiological interactions of integral membrane proteins with the solid support to the extent that they will not diffuse in the plane of the membrane. To alleviate some of these problems we have developed a new tethered polymer-supported planar lipid bilayer system, which permitted us to reconstitute integral membrane proteins in a laterally mobile form. We have supported lipid bilayers on a newly designed polyethyleneglycol cushion, which provided a soft support and, for increased stability, covalent linkage of the membranes to the supporting quartz or glass substrates. The formation and morphology of the bilayers were followed by total internal reflection and epifluorescence microscopy, and the lateral diffusion of the lipids and proteins in the bilayer was monitored by fluorescence recovery after photobleaching. Uniform bilayers with high lateral lipid diffusion coefficients (0.8-1.2 x 10(-8) cm(2)/s) were observed when the polymer concentration was kept slightly below the mushroom-to-brush transition. Cytochrome b(5) and annexin V were used as first test proteins in this system. When reconstituted in supported bilayers that were directly supported on quartz, both proteins were largely immobile with mobile fractions < 25%. However, two populations of laterally mobile proteins were observed in the polymer-supported bilayers. Approximately 25% of cytochrome b(5) diffused with a diffusion coefficient of approximately 1 x 10(-8) cm(2)/s, and 50-60% diffused with a diffusion coefficient of approximately 2 x 10(-10) cm(2)/s. Similarly, one-third of annexin V diffused with a diffusion coefficient of approximately 3 x 10(-9) cm(2)/s, and two-thirds diffused with a diffusion coefficient of approximately 4 x 10(-10) cm(2)/s. A model for the interaction of these proteins with the underlying polymer is discussed.  相似文献   

16.
Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24–37°C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an “active actin-membrane composite” cell surface.  相似文献   

17.
The 53-kDa insulin receptor substrate protein (IRSp53) organizes the actin cytoskeleton in response to stimulation of small GTPases, promoting the formation of cell protrusions such as filopodia and lamellipodia. IMD is the N-terminal 250 amino acid domain (IRSp53/MIM Homology Domain) of IRSp53 (also called I-BAR), which can bind to negatively charged lipid molecules. Overexpression of IMD induces filopodia formation in cells and purified IMD assembles finger-like protrusions in reconstituted lipid membranes. IMD was shown by several groups to bundle actin filaments, but other groups showed that it also binds to membranes. IMD binds to negatively charged lipid molecules with preference to clusters of PI(4,5)P2. Here, we performed a range of different in vitro fluorescence experiments to determine the binding properties of the IMD to phospholipids. We used different constructs of large unilamellar vesicles (LUVETs), containing neutral or negatively charged phospholipids. We found that IMD has a stronger binding interaction with negatively charged PI(4,5)P2 or PS lipids than PS/PC or neutral PC lipids. The equilibrium dissociation constant for the IMD–lipid interaction falls into the 78–170 μM range for all the lipids tested. The solvent accessibility of the fluorescence labels on the IMD during its binding to lipids is also reduced as the lipids become more negatively charged. Actin affects the IMD–lipid interaction, depending on its polymerization state. Monomeric actin partially disrupts the binding, while filamentous actin can further stabilize the IMD–lipid interaction.  相似文献   

18.
A "translation" of the phenomenological permeability coefficients into friction and distribution coefficients amenable to physical interpretation is presented. Expressions are obtained for the solute permeability coefficient ω and the reflection coefficient σ for both non-electrolytic and electrolytic permeants. An analysis of the coefficients is given for loose membranes as well as for dense natural membranes where transport may go through capillaries or by solution in the lipoid parts of the membrane. Water diffusion and filtration and the relation between these and capillary pore radius of the membrane are discussed. For the permeation of ions through the charged membranes equations are developed for the case of zero electrical current in the membrane. The correlation of σ with ω and Lp for electrolytes resembles that for non-electrolytes. In this case ω and σ depend markedly on ion concentration and on the charge density of the membrane. The reflection coefficient may assume negative values indicating anomalous osmosis. An analysis of the phenomena of anomalous osmosis was carried out for the model of Teorell and Meyer and Sievers and the results agree with the experimental data of Loeb and of Grim and Sollner. A set of equations and reference curves are presented for the evaluation of ω and σ in the transport of polyvalent ions through charged membranes.  相似文献   

19.
Lipopolysaccharide (LPS), which constitutes the outermost layer of Gram-negative bacterial cells as a typical component essential for their life, induces the first line defense system of innate immunity of higher animals. To understand the basic mode of interaction between bacterial LPS and phospholipid cell membranes, distribution patterns were studied by various physical methods of deep rough mutant LPS (ReLPS) of Escherichia coli incorporated in phospholipid bilayers as simple models of cell membranes. Solid-state 31P-NMR spectroscopic analysis suggested that a substantial part of ReLPS is incorporated into 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipid bilayers when multilamellar vesicles were prepared from mixtures of these. In egg L-α-phosphatidylcholine (egg-PC)-rich membranes, ReLPS undergoes micellization. In phosphatidylethanolamine-rich membranes, however, micellization was not observed. We studied by microscopic techniques the location of ReLPS in membranes of ReLPS/egg-PC (1:10 M/M) and ReLPS/egg-PC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (1:9:1 M/M/M). The influence of ReLPS on the physicochemical properties of the membranes was studied as well. Microscopic images of both giant unilamellar vesicles and supported planar lipid bilayers showed that LPS was uniformly incorporated in the egg-PC lipid bilayers. In the egg-PC/POPG (9:1 M/M) lipid bilayers, however, ReLPS is only partially incorporated and becomes a part of the membrane in a form of aggregates (or as mixed aggregates with the lipids) on the bilayer surface. The lipid lateral diffusion coefficient measurements at various molar ratios of ReLPS/egg-PC/POPG indicated that the incorporated ReLPS reduces the diffusion coefficients of the phospholipids in the membrane. The retardation of diffusion became more significant with increasing POPG concentrations in the membrane at high ReLPS/phospholipid ratios. This work demonstrated that the phospholipid composition has critical influence on the distribution of added ReLPS in the respective lipid membranes and also on the morphology and physicochemical property of the resulting membranes. A putative major factor causing these phenomena is reasoned to be the miscibility between ReLPS and individual phospholipid compositions.  相似文献   

20.
In eukaryotic cells, localized actin polymerization is able to deform the plasma membrane and push the cell forward. Depolymerization of actin filaments and diffusion of actin monomers ensure the availability of monomers at sites of polymerization, and therefore these processes must play an active role in cellular actin dynamics. Here we reveal experimental evidence that actin gel growth can be limited by monomer diffusion, consistent with theoretical predictions. We study actin gels formed on beads coated with ActA (and ActA fragments), the bacterial factor responsible for actin-based movement of Listeria monocytogenes. We observe a saturation of gel thickness with increasing bead radius, the signature of diffusion control. Data analysis using an elastic model of actin gel growth gives an estimate of 2×10–8 cm–2 s–1 for the diffusion coefficient of actin monomers through the gel, ten times less than in buffer, and in agreement with literature values in bulk cytoskeleton, providing corroboration of our model. The depolymerization rate of actin filaments and the elastic modulus of the gel are also evaluated. Furthermore, we qualitatively examine the different actin gels produced when ActA fragments interact with either VASP or the Arp2/3 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号