首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic mutations in TEK, the gene encoding endothelial cell tyrosine kinase receptor TIE2, cause more than half of sporadically occurring unifocal venous malformations (VMs). Here, we report that somatic mutations in PIK3CA, the gene encoding the catalytic p110α subunit of PI3K, cause 54% (27 out of 50) of VMs with no detected TEK mutation. The hotspot mutations c.1624G>A, c.1633G>A, and c.3140A>G (p.Glu542Lys, p.Glu545Lys, and p.His1047Arg), frequent in PIK3CA-associated cancers, overgrowth syndromes, and lymphatic malformation (LM), account for >92% of individuals who carry mutations. Like VM-causative mutations in TEK, the PIK3CA mutations cause chronic activation of AKT, dysregulation of certain important angiogenic factors, and abnormal endothelial cell morphology when expressed in human umbilical vein endothelial cells (HUVECs). The p110α-specific inhibitor BYL719 restores all abnormal phenotypes tested, in PIK3CA- as well as TEK-mutant HUVECs, demonstrating that they operate via the same pathogenic pathways. Nevertheless, significant genotype-phenotype correlations in lesion localization and histology are observed between individuals with mutations in PIK3CA versus TEK, pointing to gene-specific effects.  相似文献   

2.
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of inherited neuropathies. Mutations in approximately 45 genes have been identified as being associated with CMT. Nevertheless, the genetic etiologies of at least 30% of CMTs have yet to be elucidated. Using a genome-wide linkage study, we previously mapped a dominant intermediate CMT to chromosomal region 3q28–q29. Subsequent exome sequencing of two affected first cousins revealed heterozygous mutation c.158G>A (p.Gly53Asp) in GNB4, encoding guanine-nucleotide-binding protein subunit beta-4 (Gβ4), to cosegregate with the CMT phenotype in the family. Further analysis of GNB4 in an additional 88 unrelated CMT individuals uncovered another de novo mutation, c.265A>G (p.Lys89Glu), in this gene in one individual. Immunohistochemistry studies revealed that Gβ4 was abundant in the axons and Schwann cells of peripheral nerves and that expression of Gβ4 was significantly reduced in the sural nerve of the two individuals carrying the c.158G>A (p.Gly53Asp) mutation. In vitro studies demonstrated that both the p.Gly53Asp and p.Lys89Glu altered proteins impaired bradykinin-induced G-protein-coupled-receptor (GPCR) signaling, which was facilitated by the wild-type Gβ4. This study identifies GNB4 mutations as a cause of CMT and highlights the importance of Gβ4-related GPCR signaling in peripheral-nerve function in humans.  相似文献   

3.
Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.  相似文献   

4.
To reveal the clonal architecture of melanoma and associated driver mutations, whole genome sequencing (WGS) and targeted extension sequencing were used to characterize 124 melanoma cases. Significantly mutated gene analysis using 13 WGS cases and 15 additional paired extension cases identified known melanoma genes such as BRAF, NRAS, and CDKN2A, as well as a novel gene EPHA3, previously implicated in other cancer types. Extension studies using tumors from another 96 patients discovered a large number of truncation mutations in tumor suppressors (TP53 and RB1), protein phosphatases (e.g., PTEN, PTPRB, PTPRD, and PTPRT), as well as chromatin remodeling genes (e.g., ASXL3, MLL2, and ARID2). Deep sequencing of mutations revealed subclones in the majority of metastatic tumors from 13 WGS cases. Validated mutations from 12 out of 13 WGS patients exhibited a predominant UV signature characterized by a high frequency of C->T transitions occurring at the 3′ base of dipyrimidine sequences while one patient (MEL9) with a hypermutator phenotype lacked this signature. Strikingly, a subclonal mutation signature analysis revealed that the founding clone in MEL9 exhibited UV signature but the secondary clone did not, suggesting different mutational mechanisms for two clonal populations from the same tumor. Further analysis of four metastases from different geographic locations in 2 melanoma cases revealed phylogenetic relationships and highlighted the genetic alterations responsible for differential drug resistance among metastatic tumors. Our study suggests that clonal evaluation is crucial for understanding tumor etiology and drug resistance in melanoma.  相似文献   

5.
We identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.Arg51Cys]) in unrelated children with bilateral anophthalmia, intellectual disability, and rhizomelic skeletal dysplasia. c.152G>A (p.Arg51His) segregated with autosomal-dominant bilateral colobomatous microphthalmia in a large multiplex family. The fourth heterozygous mutation (c.145G>A [p.Glu49Lys]) affected an amino acid within two residues of Arg51 in an adult male with bilateral colobomata. In a fifth family, a homozygous mutation (c.740G>A [p.Arg247Gln]) altering a different region of the protein was identified in two male siblings with bilateral retinal colobomata. In mouse embryos, Mab21l2 showed strong expression in the developing eye, pharyngeal arches, and limb bud. As predicted by structural homology, wild-type MAB21L2 bound single-stranded RNA, whereas this activity was lost in all altered forms of the protein. MAB21L2 had no detectable nucleotidyltransferase activity in vitro, and its function remains unknown. Induced expression of wild-type MAB21L2 in human embryonic kidney 293 cells increased phospho-ERK (pERK1/2) signaling. Compared to the wild-type and p.Arg247Gln proteins, the proteins with the Glu49 and Arg51 variants had increased stability. Abnormal persistence of pERK1/2 signaling in MAB21L2-expressing cells during development is a plausible pathogenic mechanism for the heterozygous mutations. The phenotype associated with the homozygous mutation might be a consequence of complete loss of MAB21L2 RNA binding, although the cellular function of this interaction remains unknown.  相似文献   

6.
The SWI/SNF chromatin remodeling complex is frequently inactivated by somatic mutations of its various components in various types of cancers, and also by aberrant DNA methylation. However, its somatic mutations and aberrant methylation in esophageal squamous cell carcinomas (ESCCs) have not been fully analyzed. In this study, we aimed to clarify in ESCC, what components of the SWI/SNF complex have somatic mutations and aberrant methylation, and when somatic mutations of the SWI/SNF complex occur. Deep sequencing of components of the SWI/SNF complex using a bench-top next generation sequencer revealed that eight of 92 ESCCs (8.7%) had 11 somatic mutations of 7 genes, ARID1A, ARID2, ATRX, PBRM1, SMARCA4, SMARCAL1, and SMARCC1. The SMARCA4 mutations were located in the Forkhead (85Ser>Leu) and SNF2 family N-terminal (882Glu>Lys) domains. The PBRM1 mutations were located in a bromodomain (80Asn>Ser) and an HMG-box domain (1,377Glu>Lys). For most mutations, their mutant allele frequency was 31–77% (mean 61%) of the fraction of cancer cells in the same samples, indicating that most of the cancer cells in individual ESCC samples had the SWI/SNF mutations on one allele, when present. In addition, a BeadChip array analysis revealed that a component of the SWI/SNF complex, ACTL6B, had aberrant methylation at its promoter CpG island in 18 of 52 ESCCs (34.6%). These results showed that genetic and epigenetic alterations of the SWI/SNF complex are present in ESCCs, and suggested that genetic alterations are induced at an early stage of esophageal squamous cell carcinogenesis.  相似文献   

7.
In a subset of inherited retinal degenerations (including cone, cone-rod, and macular dystrophies), cone photoreceptors are more severely affected than rods; ABCA4 mutations are the most common cause of this heterogeneous class of disorders. To identify retinal-disease-associated genes, we performed exome sequencing in 28 individuals with “cone-first” retinal disease and clinical features atypical for ABCA4 retinopathy. We then conducted a gene-based case-control association study with an internal exome data set as the control group. TTLL5, encoding a tubulin glutamylase, was highlighted as the most likely disease-associated gene; 2 of 28 affected subjects harbored presumed loss-of-function variants: c.[1586_1589delAGAG];[1586_1589delAGAG], p.[Glu529Valfs2];[Glu529Valfs2], and c.[401delT(;)3354G>A], p.[Leu134Argfs45(;)Trp1118]. We then inspected previously collected exome sequence data from individuals with related phenotypes and found two siblings with homozygous nonsense variant c.1627G>T (p.Glu543) in TTLL5. Subsequently, we tested a panel of 55 probands with retinal dystrophy for TTLL5 mutations; one proband had a homozygous missense change (c.1627G>A [p.Glu543Lys]). The retinal phenotype was highly similar in three of four families; the sibling pair had a more severe, early-onset disease. In human and murine retinae, TTLL5 localized to the centrioles at the base of the connecting cilium. TTLL5 has been previously reported to be essential for the correct function of sperm flagella in mice and play a role in polyglutamylation of primary cilia in vitro. Notably, genes involved in the polyglutamylation and deglutamylation of tubulin have been associated with photoreceptor degeneration in mice. The electrophysiological and fundus autofluorescence imaging presented here should facilitate the molecular diagnosis in further families.  相似文献   

8.
The exonuclease1 (Exo1) gene is a key component of mismatch repair (MMR) by resecting the damaged strand, which is the only exonuclease involved in the human MMR system. The gene product is a member of the RAD2 nuclease family and functions in DNA replication, repair and recombination. However, whether Exo1 is required to activate MMR-dependent DNA damage response (DDR) remains unknown, the conclusions of the Exo1 polymorphisms on cancer susceptibility studies were not consistent. We carried out a meta-analysis of 7 case-control studies to clarify the association between the Exo1 K589E polymorphism and cancer risk. Overall,a significant association of the Exo1 K589E polymorphism with cancer risk in all genetic models (Lys vs Glu: OR = 1.51, 95%CI:1.39–1.99, P<0.01; Glu/Lys vs Glu/Glu: OR = 1.43, 95%CI:1.28–1.60, P<0.01; Lys/Lys vs Glu/Glu: OR = 2.45, 95%CI:1.90–3.17, P<0.01; Lys/Lys+Glu/Lys vs Glu/Glu: OR = 1.53, 95%CI:1.38–1.71, P<0.01; Glu/Glu vs Glu/Lys+Lys/Lys: OR =  2.27, 95%CI:1.79–2.89, P<0.01). In the stratified analysis by ethnicity, significantly increased risk was observed in Asian population (Lys vs Glu: OR = 1.53, 95%CI:1.39–1.69, P<0.01; Glu/Lys vs Glu/Glu: OR = 1.50, 95%CI:1.34–1.69, P<0.01; Lys/Lys vs Glu/Glu: OR = 2.48, 95%CI:1.84–3.34, P<0.01; Lys/Lys+Glu/Lys vs Glu/Glu: OR = 1.58, 95%CI:1.41–1.78, P<0.01; Glu/Glu vs Glu/Lys+Lys/Lys: OR = 2.18, 95%CI:1.62–2.93, P<0.01). Subgroup analysis based on smoking suggested Exo1 K589E polymorphism conferred significant risk among smokers (Lys/Lys+Glu/Lys vs Glu/Glu: OR = 2.16, 95%CI:1.77–2.63, P<0.01), but not in non-smokers (Lys/Lys+Glu/Lys vs Glu/Glu: OR = 0.89, 95%CI:0.64–1.24, P = 0.50). In conclusion, Exo1 K589E Lys allele may be used as a novel biomarker for cancer susceptibility, particularly in smokers.  相似文献   

9.
Catel-Manzke syndrome is characterized by Pierre Robin sequence and a unique form of bilateral hyperphalangy causing a clinodactyly of the index finger. We describe the identification of homozygous and compound heterozygous mutations in TGDS in seven unrelated individuals with typical Catel-Manzke syndrome by exome sequencing. Six different TGDS mutations were detected: c.892A>G (p.Asn298Asp), c.270_271del (p.Lys91Asnfs22), c.298G>T (p.Ala100Ser), c.294T>G (p.Phe98Leu), c.269A>G (p.Glu90Gly), and c.700T>C (p.Tyr234His), all predicted to be disease causing. By using haplotype reconstruction we showed that the mutation c.298G>T is probably a founder mutation. Due to the spectrum of the amino acid changes, we suggest that loss of function in TGDS is the underlying mechanism of Catel-Manzke syndrome. TGDS (dTDP-D-glucose 4,6-dehydrogenase) is a conserved protein belonging to the SDR family and probably plays a role in nucleotide sugar metabolism.  相似文献   

10.
Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic condition characterized by ocular, cutaneous, and central nervous system anomalies. Key clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, and central nervous system lipomas. Seizures, spasticity, and intellectual disability can be present, although affected individuals without seizures and with normal intellect have also been reported. Given the patchy and asymmetric nature of the malformations, ECCL has been hypothesized to be due to a post-zygotic, mosaic mutation. Despite phenotypic overlap with several other disorders associated with mutations in the RAS-MAPK and PI3K-AKT pathways, the molecular etiology of ECCL remains unknown. Using exome sequencing of DNA from multiple affected tissues from five unrelated individuals with ECCL, we identified two mosaic mutations, c.1638C>A (p.Asn546Lys) and c.1966A>G (p.Lys656Glu) within the tyrosine kinase domain of FGFR1, in two affected individuals each. These two residues are the most commonly mutated residues in FGFR1 in human cancers and are associated primarily with CNS tumors. Targeted resequencing of FGFR1 in multiple tissues from an independent cohort of individuals with ECCL identified one additional individual with a c.1638C>A (p.Asn546Lys) mutation in FGFR1. Functional studies of ECCL fibroblast cell lines show increased levels of phosphorylated FGFRs and phosphorylated FRS2, a direct substrate of FGFR1, as well as constitutive activation of RAS-MAPK signaling. In addition to identifying the molecular etiology of ECCL, our results support the emerging overlap between mosaic developmental disorders and tumorigenesis.  相似文献   

11.
12.

Objective

Esophageal cancer was the fifth most commonly diagnosed cancer and the fourth leading cause of cancer-related death in China in 2009. Genetic factors might play an important role in esophageal squamous cell carcinoma (ESCC) carcinogenesis.

Designs and Methods

To evaluate the effect p21, p53, TP53BP1 and p73 single nucleotide polymorphisms (SNPs) on the risk of ESCC, we conducted a hospital based case–control study. A total of 629 ESCC cases and 686 controls were recruited. Their genotypes were determined using ligation detection reaction (LDR) method.

Results

When the p21 rs3176352 GG homozygote genotype was used as the reference group, the CC genotype was associated with a significantly increased risk of ESCC. When the p73 rs1801173 CC homozygote genotype was used as the reference group, the CT genotype was associated with a significantly increased risk of ESCC. After Bonferroni correction, for p21 rs3176352 G>C, the p correct was still significant. For the other six SNPs, in all comparison models, no association between the polymorphisms and ESCC risk was observed.

Conclusions

p21 rs3176352 G>C and p73 rs1801173 C>T SNPs are associated with increased risk of ESCC. To confirm the current findings, additional, larger studies and tissue-specific biological characterization are required.  相似文献   

13.
Mutations in epithelial growth factor receptor (EGFR), as well as in the EGFR downstream target KRAS are frequently observed in non-small cell lung cancer (NSCLC). Chronic obstructive pulmonary disease (COPD), an independent risk factor for developing NSCLC, is associated with an increased activation of EGFR. In this study we determined presence of EGFR and KRAS hotspot mutations in 325 consecutive NSCLC patients subjected to EGFR and KRAS mutation analysis in the diagnostic setting and for whom the pulmonary function has been determined at time of NSCLC diagnosis. Information about age at diagnosis, sex, smoking status, forced vital capacity (FVC) and forced expiratory volume in 1 sec (FEV1) was collected. Chronic obstructive pulmonary disease(COPD) was defined according to 2013 GOLD criteria. Chi-Square, student t-test and multivariate logistic regression were used to analyze the data. A total of 325 NSCLC patients were included, 193 with COPD and 132 without COPD. COPD was not associated with presence of KRAS hotspot mutations, while EGFR mutations were significantly higher in non-COPD NSCLC patients. Both female gender (HR 2.61; 95% CI: 1.56–4.39; p<0.001) and smoking (HR 4.10; 95% CI: 1.14–14.79; p = 0.03) were associated with KRAS mutational status. In contrast, only smoking (HR 0.11; 95% CI: 0.04–0.32; p<0.001) was inversely associated with EGFR mutational status. Smoking related G>T and G>C transversions were significantly more frequent in females (86.2%) than in males (61.5%) (p = 0.008). The exon 19del mutation was more frequent in non-smokers (90%) compared to current or past smokers (36.8%). In conclusion, KRAS mutations are more common in females and smokers, but are not associated with COPD-status in NSCLC patients. EGFR mutations are more common in non-smoking NSCLC patients.  相似文献   

14.

Background

Tumour necrosis factor-alpha (TNF-α) and nuclear factor of kappa light chain gene enhancer in activated B cells (NF-κB) play critical role in carcinogenesis processes like tumour initiation, proliferation, migration and invasion. Single nucleotide polymorphisms in TNF-α, NF-κB and its inhibitor IκB genes were shown to be associated with susceptibility and prognosis of several cancers; however, their role in esophageal squamous cell carcinoma (ESCC) is not well recognised. Therefore, in present study, we aimed to investigate association of common polymorphisms in TNFA, NFkB1 and NFKBIA with risk and prognosis of ESCC in northern Indian population.

Methods

We genotyped 290 ESCC patients (including 162 followed up cases) and 311 mean age, gender and ethnicity matched controls for TNFA -308G>A, NFkB1 -94ATTG ins/del and NFKBIA (-826C>T and 3’UTRA>G) polymorphisms using PCR alone or followed by RFLP and TaqMan assay.

Results

TNFA -308GA genotype was associated with increased risk of ESCC specifically in females and in patients with regional lymph node involvement, while, NFKBIA -826CT+TT genotype conferred decreased risk of ESCC in females. Haplotypes of NFKBIA -826C>T and 3’UTRA>G polymorphisms, C-826G3UTR and T-826A3UTR, were associated with reduced risk of ESCC. No independent role of NFkB1 -94ATTG ins/del polymorphism in susceptibility of ESCC was found. Multi-dimensionality reduction analysis showed three factor model TNFA-308, NFKBIA-826, NFKBIA 3’UTR as better predictor for risk of ESCC. Furthermore, combined risk genotype analysis of all studied polymorphisms showed increased risk of ESCC in patients with 1-3 risk genotype compared to ‘0’ risk genotype. Survival analysis did not show any significant prognostic effect of studied polymorphisms. However, in stepwise multivariate analysis, metastasis was found to be independent prognostic predictor of ESCC patients.

Conclusion

TNFA-308 and NFKBIA (-826C>T and 3’UTRA>G) polymorphisms may play role in susceptibility but not in prognosis of ESCC patients in northern Indian population.  相似文献   

15.

Background

Esophageal cancer was the fifth most commonly diagnosed cancer and the fourth leading cause of cancer-related death in China in 2009. Esophageal squamous cell carcinoma (ESCC) accounts for more than 90 percent of esophageal cancers. Genetic factors probably play an important role in the ESCC carcinogenesis.

Methods

We conducted a hospital based case-control study to evaluate functional hTERT rs2736098 G>A and TERT-CLPTM1L rs401681 C>T single nucleotide polymorphisms (SNPs) on the risk of ESCC. Six hundred and twenty-nine ESCC cases and 686 controls were recruited. Their genotypes were determined using the ligation detection reaction (LDR) method.

Results

When the TERT-CLPTM1L rs401681 CC homozygote genotype was used as the reference group, the CT genotype was associated with a significantly decreased risk of ESCC (adjusted OR  = 0.74, 95% CI  = 0.58–0.94, p = 0.012); the CT/TT variants were associated with a 26% decreased risk of ESCC (adjusted OR  = 0.74, 95% CI  = 0.59–0.93, P = 0.009). The significantly decreased risk of ESCC associated with the TERT-CLPTM1L rs401681 C>T polymorphism was associated with male sex, young age (<63 years in our study) and alcohol consumption. No association between the hTERT rs2736098 G>A polymorphism and ESCC risk was observed.

Conclusion

TERT-CLPTM1L rs401681 CT and CT/TT genotypes were associated with decreased risk of ESCC, particularly among men, young patients and those reported to be drinkers. However, our results are preliminary conclusions. Larger studies with more rigorous study designs are required to confirm the current findings.  相似文献   

16.
Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs.  相似文献   

17.
Singleton-Merten syndrome (SMS) is an autosomal-dominant multi-system disorder characterized by dental dysplasia, aortic calcification, skeletal abnormalities, glaucoma, psoriasis, and other conditions. Despite an apparent autosomal-dominant pattern of inheritance, the genetic background of SMS and information about its phenotypic heterogeneity remain unknown. Recently, we found a family affected by glaucoma, aortic calcification, and skeletal abnormalities. Unlike subjects with classic SMS, affected individuals showed normal dentition, suggesting atypical SMS. To identify genetic causes of the disease, we performed exome sequencing in this family and identified a variant (c.1118A>C [p.Glu373Ala]) of DDX58, whose protein product is also known as RIG-I. Further analysis of DDX58 in 100 individuals with congenital glaucoma identified another variant (c.803G>T [p.Cys268Phe]) in a family who harbored neither dental anomalies nor aortic calcification but who suffered from glaucoma and skeletal abnormalities. Cys268 and Glu373 residues of DDX58 belong to ATP-binding motifs I and II, respectively, and these residues are predicted to be located closer to the ADP and RNA molecules than other nonpathogenic missense variants by protein structure analysis. Functional assays revealed that DDX58 alterations confer constitutive activation and thus lead to increased interferon (IFN) activity and IFN-stimulated gene expression. In addition, when we transduced primary human trabecular meshwork cells with c.803G>T (p.Cys268Phe) and c.1118A>C (p.Glu373Ala) mutants, cytopathic effects and a significant decrease in cell number were observed. Taken together, our results demonstrate that DDX58 mutations cause atypical SMS manifesting with variable expression of glaucoma, aortic calcification, and skeletal abnormalities without dental anomalies.  相似文献   

18.
Acephalic spermatozoa syndrome is a rare and severe form of teratozoospermia characterized by a predominance of headless spermatozoa in the ejaculate. Family clustering and consanguinity suggest a genetic origin; however, causative mutations have yet to be identified. We performed whole-exome sequencing in two unrelated infertile men and subsequent variant filtering identified one homozygous (c.824C>T [p.Thr275Met]) and one compound heterozygous (c.1006C>T [p.Arg356Cys] and c.485T>A [p.Met162Lys]) SUN5 (also named TSARG4) variants. Sanger sequencing of SUN5 in 15 additional unrelated infertile men revealed four compound heterozygous (c.381delA [p.Val128Serfs7] and c.824C>T [p.Thr275Met]; c.381delA [p.Val128Serfs7] and c.781G>A [p.Val261Met]; c.216G>A [p.Trp72] and c.1043A>T [p.Asn348Ile]; c.425+1G>A/c.1043A>T [p.Asn348Ile]) and two homozygous (c.851C>G [p.Ser284]; c.350G>A [p.Gly114Arg]) variants in six individuals. These 10 SUN5 variants were found in 8 of 17 unrelated men, explaining the genetic defect in 47.06% of the affected individuals in our cohort. These variants were absent in 100 fertile population-matched control individuals. SUN5 variants lead to absent, significantly reduced, or truncated SUN5, and certain variants altered SUN5 distribution in the head-tail junction of the sperm. In summary, these results demonstrate that biallelic SUN5 mutations cause male infertility due to autosomal-recessive acephalic spermatozoa syndrome.  相似文献   

19.
Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary cancer syndrome that predisposes to the development of a variety of benign and malignant tumors, especially cerebellar hemangioblastomas, retinal angiomas and clear-cell renal cell carcinomas (RCC). We have identified of VHL gene using immunohistochemistry in a patient who was diagnosed for RCC. In order to understand the involvement of mutation in the VHL gene exon 1 was amplified and sequenced (accession number: JX 401534). The sequence analysis revealed the presence of novel missense mutations c.194 C>T, c.239 G>A, c.278 G>A, c.319 C>G, c. 337 C > G leading to the following variations p.Ala 65 Val, p.Gly 80 Asp, p.Gly 93 Glu, p.Gln 107 Glu, p.Gln 113 Glu in the protein.  相似文献   

20.
Esophageal cancer is the eighth most common cancer and sixth leading cause of cancer associated death worldwide. Besides environmental risk factors, genetic factors might play an important role in the esophageal cancer carcinogenesis. We conducted a hospital based case–control study to evaluate the genetic susceptibility of functional single nucleotide polymorphisms (SNPs) in the microRNAs on the development of esophageal cancer. A total of 629 esophageal squamous cell carcinoma (ESCC) cases and 686 controls were recruited for this study. The hsa-miR-34b/c rs4938723 T>C, pri-miR-124-1 rs531564 C>G, pre-miR-125a rs12975333 G>T and hsa-miR-423 rs6505162 C>A genotypes were determined using Ligation Detection Reaction (LDR) method. Our results demonstrated that hsa-miR-34b/c rs4938723 CC genotype had a decreased risk of ESCC. The association was evident among patients who never drinking. Hsa-miR-423 rs6505162 C>A might associated with a significantly increased risk of ESCC in patients who smoking. These findings indicated that functional polymorphisms hsa-miR-34b/c rs4938723 T>C and hsa-miR-423 rs6505162 C>A might alter individual susceptibility to ESCC. However, our results were obtained with a limited sample size. Future larger studies with other ethnic populations are required to confirm current findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号