首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolfram syndrome is an early onset genetic disease (1/180,000) featuring diabetes mellitus and optic neuropathy, associated to mutations in the WFS1 gene. Wfs1−/− mouse model shows pancreatic beta cell atrophy, but its visual performance has not been investigated, prompting us to study its visual function and histopathology of the retina and optic nerve. Electroretinogram and visual evoked potentials (VEPs) were performed in Wfs1−/− and Wfs1+/+ mice at 3, 6, 9 and 12 months of age. Fundi were pictured with Micron III apparatus. Retinal ganglion cell (RGC) abundance was determined from Brn3a immunolabeling of retinal sections. RGC axonal loss was quantified by electron microscopy in transversal optic nerve sections. Endoplasmic reticulum stress was assessed using immunoglobulin binding protein (BiP), protein disulfide isomerase (PDI) and inositol-requiring enzyme 1 alpha (Ire1α) markers. Electroretinograms amplitudes were slightly reduced and latencies increased with time in Wfs1−/− mice. Similarly, VEPs showed decreased N+P amplitudes and increased N-wave latency. Analysis of unfolded protein response signaling revealed an activation of endoplasmic reticulum stress in Wfs1 −/− mutant mouse retinas. Altogether, progressive VEPs alterations with minimal neuronal cell loss suggest functional alteration of the action potential in the Wfs1 −/− optic pathways.  相似文献   

2.
[3H]flunitrazepam binding was assayed in retinae of 25-day-old rats subjected either to unilateral enucleation at day 15, to intracranial unilateral cutting of the optic nerve at day 17, or to unilateral ablation of the visual cortex at day 17 postnatally.Unilateral enucleation resulted in an enhanced [3H]flunitrazepam binding in the retina of the remaining eye by 23% (P < 0.002, two-tailed Student t-test) as compared to unoperated controls.In rats with one optic nerve cut shortly before the optic chiasm, benzodiazepine binding in the retina of the lesioned side was significantly higher by 20.4 ± 7.6% (P < 0.02, N = 10, paired test) in comparison to that in the retina with the intact optic nerve.Unilateral visual cortex ablation resulted in a 13% decrease (P < 0.02) in [3H]flunitrazepam binding in the retina contralateral to the brain lesion.In the lesioned rats of all three groups, the retinal benzodiazepine receptors were no longer capable of being modified by light/dark adaptation as is observed in normal rats. Our data suggest that (i) rat retinal benzodiazepine receptors are under a control from the visual cortex, and (ii) the benzodiazepine receptors of both eyes seem to be mutually tuned, presumably via a cortico-retinal feedback loop and an interhemispheric cortico-cortical information transfer.  相似文献   

3.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations.In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.  相似文献   

4.
5.
Several complementary methods able to visualize the internal structures of eyes are used in the clinical practice in the diagnosis of pathologies affecting a specific zone of the eye. Despite the significant technological progress, the visualization of the entire eyeball at micrometric resolution is yet an unsolved task both in clinical diagnostics and in laboratory research. With this respect, high resolution 3D images of the eyeball would be extremely useful, in the study of various pathologies of the retina, the lens, and of the optic nerve. In this work we combined the state-of-the-art of micro computed tomography technology with phase-contrast imaging, a recent highly sensitive technique well adapted to investigate soft tissues without the use of contrast agents; we applied the technique in the post-mortem analysis of monkey eyes, which share several similitudes with the human organ. We reported here vascular, nervous and anatomical details of monkey eyes imaged with a 3.1 × 3.1 × 3.1 µm3 voxel size as well as the first 3D visualisation of the entire globe of Macaca’s fascicularis eye. Results have also been compared with, and validated by, histological analysis.  相似文献   

6.
Retinotectal Connexions of a Heterotopic Eye   总被引:1,自引:0,他引:1  
THE mechanisms which cause the formation of specific synaptic connections in the nervous system are rather obscure. The development of specific connexions between eye and brain indicates a stage-dependent functional specification of the retina1 which allows the retina to form predictable, specific connexions with the optic tectum, but the manner in which optic nerve fibres terminate in the tectum and the mechanisms which restore the visual projection after optic nerve regeneration are as yet not fully determined2.  相似文献   

7.
  • 1.1. The peripheral visual pathway from the median eyes of the scorpion Androctonus australis was interrupted at different points and the effect on the circadian rhythm of median-eye sensitivity was examined.
  • 2.2. Any interruption of the visual pathway distal to the supraesophageal ganglion abolishes the circadian sensitivity rhythm in the median eyes. This rhythm is thus controlled by efferents in the optic nerve (very probably via the neurosecretory axons) rather than by way of the hemolymph.
  • 3.3. Following transection of the optic nerve, the sensitivity of the median eyes proceeds rapidly to the daytime state. This condition is associated with movement of the screening pigment into the distal ends of the visual cells.
  • 4.4. The oscillator system controlling the circadian pigment migration in the median eye cannot be located in the eye itself, but must lie in the CNS, proximal to the first optic ganglion. The oscillator itself need not be connected to both median eyes in order to function normally, as revealed by the continued rhythm in the contralateral eye following unilateral optic nerve section.
  相似文献   

8.
Here, we use a mouse model (DBA/2J) to readdress the location of insult(s) to retinal ganglion cells (RGCs) in glaucoma. We localize an early sign of axon damage to an astrocyte-rich region of the optic nerve just posterior to the retina, analogous to the lamina cribrosa. In this region, a network of astrocytes associates intimately with RGC axons. Using BAX-deficient DBA/2J mice, which retain all of their RGCs, we provide experimental evidence for an insult within or very close to the lamina in the optic nerve. We show that proximal axon segments attached to their cell bodies survive to the proximity of the lamina. In contrast, axon segments in the lamina and behind the eye degenerate. Finally, the Wlds allele, which is known to protect against insults to axons, strongly protects against DBA/2J glaucoma and preserves RGC activity as measured by pattern electroretinography. These experiments provide strong evidence for a local insult to axons in the optic nerve.  相似文献   

9.
Prostaglandins have many important roles in ocular physiology and are used clinically for the treatment of glaucoma. The aim of this study was to analyse the contribution of each cyclooxygenase isoform to ocular prostaglandin production using isoform-specific knockout mice. Ex vivo PGE2, 6-keto-PGF, and TXB2 production was measured from whole eyes, corneal tissue, uveoscleral tissue, lens, retina and optic nerve using enzyme-linked immunosorbant assays. Ocular immunohistochemical and histological analysis was also conducted for each genotype. Levels of each of the prostaglandins measured were significantly decreased in the corneal tissue, uveoscleral tissue, lens, retina and optic nerve of COX-1−/− mice in comparison with wild-type mice. In contrast, COX-2−/− mice had similar levels of ocular prostaglandin production to wild-type mice. These results suggest that COX-1 is the principal isoform responsible for prostaglandin production in the mouse eye. The absence of COX-1 or COX-2 did not appear to effect ocular development in these mice.  相似文献   

10.
The distribution of radioactive RNA and RNA precursors in the goldfish optic tecta following intraocular injection of 3H-uridine has been studied during various stages of optic nerve regeneration. 3H-uridine was injected into the posterior chamber of the right eye 17, 30, or 60 days after both optic nerves were crushed. Fish were sacrificed at time intervals ranging from 0.5 to 21 days after injection. One day prior to sacrificing, 14C-proline was also injected into the right eye as a marker of fast axonal protein transport. Seventeen to 23 days after crushing, the approximate time of nerve reconnection, the amount of radioactive RNA appearing in the left optic tectum was increased by more than ten times control values. Approximately 30 days after crushing the nerve, when the reconnected nerve is maturing, RNA values were still elevated, but significantly decreased from the earlier stage. By 60 days after crushing the optic nerve, the amounts of RNA in the left tectum was close to normal. Evidence suggesting that, at least, some of the radioactive RNA in the tectum originated from RNA transported along optic axons rather than from RNA synthesized locally in the tectum was provided by autoradiographic experiments. Autoradiograms of paraffin sections taken from the goldfish optic tecta after the intraocular injection of 3H-uridine showed a distribution of grains in a linear pattern, suggesting a distribution over the incoming fibers during the reconnection stage of regeneration. Electron microscopic autoradiography of glutaraldehyde fixed epoxy sections confirmed that a significant number of grains (shown to be 3H-RNA) were, in fact, over regenerating optic axons. Intracranial injection of 3H-uridine, during the same stage of regeneration, on the other hand, resulted in a distribution of grains, specifically over cell perikarya. These experiments suggest that during the reconnection phase of nerve regeneration, large amounts of RNA may be carried within regenerating optic axons as they enter the optic tectum.  相似文献   

11.
Myopia, the leading cause of visual impairment worldwide, results from an increase in the axial length of the eyeball. Mutations in LEPREL1, the gene encoding prolyl 3-hydroxylase-2 (P3H2), have recently been identified in individuals with recessively inherited nonsyndromic severe myopia. P3H2 is a member of a family of genes that includes three isoenzymes of prolyl 3-hydroxylase (P3H), P3H1, P3H2, and P3H3. Fundamentally, it is understood that P3H1 is responsible for converting proline to 3-hydroxyproline. This limited additional knowledge also suggests that each isoenzyme has evolved different collagen sequence-preferred substrate specificities. In this study, differences in prolyl 3-hydroxylation were screened in eye tissues from P3h2-null (P3h2n/n) and wild-type mice to seek tissue-specific effects due the lack of P3H2 activity on post-translational collagen chemistry that could explain myopia. The mice were viable and had no gross musculoskeletal phenotypes. Tissues from sclera and cornea (type I collagen) and lens capsule (type IV collagen) were dissected from mouse eyes, and multiple sites of prolyl 3-hydroxylation were identified by mass spectrometry. The level of prolyl 3-hydroxylation at multiple substrate sites from type I collagen chains was high in sclera, similar to tendon. Almost every known site of prolyl 3-hydroxylation in types I and IV collagen from P3h2n/n mouse eye tissues was significantly under-hydroxylated compared with their wild-type littermates. We conclude that altered collagen prolyl 3-hydroxylation is caused by loss of P3H2. We hypothesize that this leads to structural abnormalities in multiple eye tissues, but particularly sclera, causing progressive myopia.  相似文献   

12.
13.
  • 1.1. Exposure of isolated Aplysia eyes to serotonin (10−7 M) produces large and long-lasting (hours) increases in the ERG recorded from the surface of the eye.
  • 2.2. Dopamine, octopamine, or acetylcholine do not mimic the effect of 5-HT on the ERG.
  • 3.3. Brief electrical optic nerve stimulation (2 Hz, 2 min) also increases the ERG and this effect also lasts a long period of time (0.5–2 hr).
  • 4.4. Our results suggest that serotonin increases the response of photoreceptor cells to light and that efferent optic nerve activity may modulate photosensitivity through release of serotonin in the eye.
  相似文献   

14.
Coloboma is a congenital disease that contributes significantly to childhood blindness. It results from the failure in closing the optic fissure, a transient opening on the ventral side of the developing eye. Although human and mouse genetic studies have identified a number of genes associated with coloboma, the detailed cellular mechanisms underlying the optic fissure closure and coloboma formation remain largely undefined. N-cadherin-mediated cell adhesion has been shown to be important for the optic fissure closure in zebrafish, but it remains to be determined experimentally how cell-cell adhesions are involved in the mammalian optic fissure closing process. α-catenin is required for cell adhesion mediated by all of the classic cadherin molecules, including N-cadherin. In this study, we used the Cre-mediated conditional knockout technique to specifically delete α-catenin from the developing mouse eye to show that it is required for the successful closing of the optic fissure. In α-catenin conditional mutant optic cups, the major cell fates, including the optic fissure margin, neural retina and retinal pigmented epithelium, are specified normally, and the retinal progenitor cells proliferate normally. However, adherens junctions components, including N-cadherin, β-catenin and filamentous actin, fail to accumulate on the apical side of α-catenin mutant retinal progenitor cells, where adherens junctions are normally abundant, and the organization of the neural retina and the optic fissure margin is disrupted. Finally, the α-catenin mutant retina gradually degenerates in the adult mouse eye. Therefore, our results show that α-catenin-mediated cell adhesion and cell organization are important for the fissure closure in mice, and further suggest that genes that regulate cell adhesion may underlie certain coloboma cases in humans.  相似文献   

15.
With the use of quantitative histological techniques, we have described, in normal mice, the formation of a system of intercellular channels within the embryonic retina and continuing without interruption into the optic stalk. The channels develop in advance of the morphological differentiation of the retinal ganglion cells and their neurites. Moreover, they appear at predictable times during gestation and are localized along the potential route to be taken by the earliest developing fibers of the optic nerve. A functional relationship may exist between the development of the channels and the subsequent outgrowth of the optic nerve from the eye. We have also examined a series of mouse embryos homozygous for the mutant gene ocular retardation (orJ), which causes optic nerve aplasia. In the orJ mutant, there is a reduction in area of these extracellular spaces and the optic nerve fails to exit from the eye. The lack of intercellular space within the mutant retina is associated with an increased number of cells which, in turn, may result from a continuing absence of normal cell death during earlier stages.  相似文献   

16.
The visual system of vertebrates consists of an image-forming and a non-image-forming optic system; the image-forming optic system involves the classic photoreceptors, the rods and cones, whereas the non-image-forming optic system involves the melanopsin-containing retinal ganglion cells. Both optic systems make direct neuroanatomical connections to the suprachiasmatic nucleus (SCN) in the hypothalamus in which the biological clock of vertebrates is located. The rhythmic output from SCN neurons is entrained by light via the retina and the retinohypothalamic tract. The response of exposure to light during the subjective night is an immediate expression of several early response genes in the SCN. We show, by quantitative real-time polymerase chain reaction, that the amount of melanopsin mRNA in the retinal ganglion cells is preserved in the blind Crx ?/? mouse with degenerated classic photoreceptors. At zeitgeber time 16, the Crx ?/? and wild-type mice were exposed to 1 h of light. This resulted in a strong up-regulation of the immediate early genes Nr4a1, Erg, and Rrad in the SCN of both genotypes. Light stimulation during the subjective night resulted in a strong up-regulation of c-fos in both genotypes with a significantly higher up-regulation in the blind Crx ?/? mouse. Expression of Grp and Vip, the genes for two classic peptides located in the SCN, was not influenced by light stimulation. The data strongly indicate the involvement of the melanopsin-based non-visual optic system in the regulation of immediate early genes in the SCN.  相似文献   

17.
The purpose of the present study was to develop and assess a novel sustained-release drug delivery system of Bimatoprost (BIM). Chitosan polymeric inserts were prepared using the solvent casting method and characterized by swelling studies, infrared spectroscopy, differential scanning calorimetry, drug content, scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar rats, was accessed by ex vivo radiation counting. The inserts were evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded inserts (equivalent to 9.0 µg BIM) were administered once into conjunctival sac, after ocular hypertension confirmation. BIM eye drop was topically instilled in a second group of glaucomatous rats for 15 days days, while placebo inserts were administered once in a third group. An untreated glaucomatous group was used as control. Intraocular pressure (IOP) was monitored for four consecutive weeks after treatment began. At the end of the experiment, retinal ganglion cells and optic nerve head cupping were evaluated in the histological eye sections. Characterization results revealed that the drug physically interacted, but did not chemically react with the polymeric matrix. Inserts sustainedly released BIM in vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM that remained in the eye was significantly lower after eye drop instillation than after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks, after one application, while IOP values remained significantly high for the placebo and untreated groups. Eye drops were only effective during the daily treatment period. IOP results were reflected in RGC counting and optic nerve head cupping damage. BIM-loaded inserts provided sustained release of BIM and seem to be a promising system for glaucoma management.  相似文献   

18.
Retrograde staining of retina of Lymnaea stagnalis with neurobiotin demonstrated that most photoreceptor cells send axons to the optic nerve directly, without intermediate contacts. Some of the photoreceptors are glutamate-immunoreactive suggesting that glutamate can provide the synaptic transmission of visual signal to the central neurons. Other photoreceptors stained via optic nerve seem to have other transmitter systems. Some of the retinal cells, but not the optic nerve fibers are pigment-dispersing hormone-immunoreactive. There are many serotonin-containing fibers in the tissue surrounding the optic cup with some of them penetrating the basal lamina of retina. Some of them belong to central neurons providing efferent innervation of the pond snail eye. Serotonergic innervation as well as pigment-dispersing hormone-containing cells are supposed to be involved in mechanism of the photosensitivity regulation of the molluscan eye.  相似文献   

19.
X Wang  Y Li  Y He  HS Liang  EZ Liu 《PloS one》2012,7(9):e44360

Background

Research into retinal ganglion cell (RGC) degeneration and neuroprotection after optic nerve injury has received considerable attention and the establishment of simple and effective animal models is of critical importance for future progress.

Methodology/Principal Findings

In the present study, the optic nerves of Wistar rats were semi-transected selectively with a novel optic nerve quantitative amputator. The variation in RGC density was observed with retro-labeled fluorogold at different time points after nerve injury. The densities of surviving RGCs in the experimental eyes at different time points were 1113.69±188.83 RGC/mm2 (the survival rate was 63.81% compared with the contralateral eye of the same animal) 1 week post surgery; 748.22±134.75 /mm2 (46.16% survival rate) 2 weeks post surgery; 505.03±118.67 /mm2 (30.52% survival rate) 4 weeks post surgery; 436.86±76.36 /mm2 (24.01% survival rate) 8 weeks post surgery; and 378.20±66.74 /mm2 (20.30% survival rate) 12 weeks post surgery. Simultaneously, we also measured the axonal distribution of optic nerve fibers; the latency and amplitude of pattern visual evoke potentials (P-VEP); and the variation in pupil diameter response to pupillary light reflex. All of these observations and profiles were consistent with post injury variation characteristics of the optic nerve. These results indicate that we effectively simulated the pathological process of primary and secondary injury after optic nerve injury.

Conclusions/Significance

The present quantitative transection optic nerve injury model has increased reproducibility, effectiveness and uniformity. This model is an ideal animal model to provide a foundation for researching new treatments for nerve repair after optic nerve and/or central nerve injury.  相似文献   

20.
Glaucoma is a very common disorder of the eye wherein the disturbance of the structural or functional integrity of the optic nerve causes characteristic atrophic changes in the optic nerve, which may lead to specific visual field defects over time. Primary open angle glaucoma (POAG) is most frequent among the three principle glaucoma subtypes. With well-established role of genes like Myocilin (MYOC), Optineurin (OPTN) and WD repeat Domain 36, (WDR36), at least 29 genetic loci have been found till date to be linked to POAG. Moreover, association studies have found 66 loci with 76 genes associated to POAG till date with conflicting results. This particular study is to summarize the current knowledge regarding the change in glaucoma prevalence worldwide and in India from 1993 onwards and compiles all the studied genes that are involved in POAG pathogenesis in Indian population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号