首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Coaggregating strains of aquatic bacteria were identified by partial 16S rRNA gene sequencing. The coaggregation abilities of four strains of Blastomonas natatoria and one strain of Micrococcus luteus varied with culture age but were always maximum in the stationary phase of growth. Each member of a coaggregating pair carried either a heat- and protease-sensitive protein (lectin) adhesin or a saccharide receptor, as coaggregation was reversed by sugars.  相似文献   

3.
4.
5.
Von Willebrand factor (VWF) plays a central role in hemostasis. Triggered by shear-stress, it adheres to platelets at sites of vascular injury. Inactivation of VWF has been associated to the shielding of its adhesion sites and proteolytic cleavage. However, the molecular nature of this shielding and its coupling to cleavage under shear-forces in flowing blood remain unknown. In this study, we describe, to our knowledge, a new force-sensory mechanism for VWF-platelet binding, which addresses these questions, based on a combination of molecular dynamics (MD) simulations, atomic force microscopy (AFM), and microfluidic experiments. Our MD simulations demonstrate that the VWF A2 domain targets a specific region at the VWF A1 domain, corresponding to the binding site of the platelet glycoprotein Ibα (GPIbα) receptor, thereby causing its blockage. This implies autoinhibition of the VWF for the binding of platelets mediated by the A1-A2 protein-protein interaction. During force-probe MD simulations, a stretching force dissociated the A1A2 complex, thereby unblocking the GPIbα binding site. Dissociation was found to be coupled to the unfolding of the A2 domain, with dissociation predominantly occurring before exposure of the cleavage site in A2, an observation that is supported by our AFM experiments. This suggests that the A2 domain prevents platelet binding in a force-dependent manner, ensuring that VWF initiates hemostasis before inactivation by proteolytic cleavage. Microfluidic experiments with an A2-deletion VWF mutant resulted in increased platelet binding, corroborating the key autoinhibitory role of the A2 domain within VWF multimers. Overall, autoinhibition of VWF mediated by force-dependent interdomain interactions offers the molecular basis for the shear-sensitive growth of VWF-platelet aggregates, and might be similarly involved in shear-induced VWF self-aggregation and other force-sensing functions in hemostasis.  相似文献   

6.
Cyclotides are bioactive cyclic peptides isolated from plants that are characterized by a topologically complex structure and exceptional resistance to enzymatic or thermal degradation. With their sequence diversity, ultra-stable core structural motif, and range of bioactivities, cyclotides are regarded as a combinatorial peptide template with potential applications in drug design. The mode of action of cyclotides remains elusive, but all reported biological activities are consistent with a mechanism involving membrane interactions. In this study, a diverse set of cyclotides from the two major subfamilies, Möbius and bracelet, and an all-d mirror image form, were examined to determine their mode of action. Their lipid selectivity and membrane affinity were determined, as were their toxicities against a range of targets (red blood cells, bacteria, and HIV particles). Although they had different membrane-binding affinities, all of the tested cyclotides targeted membranes through binding to phospholipids containing phosphatidylethanolamine headgroups. Furthermore, the biological potency of the tested cyclotides broadly correlated with their ability to target and disrupt cell membranes. The finding that a broad range of cyclotides target a specific lipid suggests their categorization as a new lipid-binding protein family. Knowledge of their membrane specificity has the potential to assist in the design of novel drugs based on the cyclotide framework, perhaps allowing the targeting of peptide drugs to specific cell types.  相似文献   

7.
Mad2, a key component of the spindle checkpoint, is closely associated with chromosomal instability and poor prognosis in cancer. p31comet is a Mad2-interacting protein that serves as a spindle checkpoint silencer at mitosis. In this study, we showed that p31comet-induced apoptosis and senescence occur via counteraction of Mad2 activity. Upon retroviral transduction of p31comet, the majority of human cancer cell lines tested lost the ability to form colonies in a low-density seeding assay. Cancer cells with p31comet overexpression underwent distinct apoptosis and/or senescence, irrespective of p53 status, confirming the cytotoxicity of p31comet. Interestingly, both cytotoxic and Mad2 binding activities were eliminated upon deletion of the C-terminal 30 amino acids of p31comet. Point mutation or deletion of the region affecting Mad2 binding additionally abolished cytotoxic activity. Consistently, wild-type Mad2 interacting with p31comet, but not its non-binding mutant, inhibited cell death, indicating that the mechanism of p31comet-induced cell death involves Mad2 inactivation. Our results clearly suggest that the regions of p31comet affecting interactions with Mad2, including the C-terminus, are essential for induction of cell death. The finding that p31comet-induced cell death is mediated by interactions with Mad2 that lead to its inactivation is potentially applicable in anticancer therapy.  相似文献   

8.
The cell adhesion molecule C-CAM belongs to the immunoglobulin superfamily and is expressed in epithelia, vessel endothelia, and hematopoietic cells. Differential splicing gives rise to different isoforms, of which the major two are C-CAM1 and C-CAM2, which both have four Ig-like domains in their extracellular portions, but differ in their cytoplasmic domains. Two different allelic variants of C-CAM, namedaandb,occur in the rat. The adhesive binding mechanism(s) of C-CAM is not known in detail. Evidence for both homophilic and heterophilic binding has been presented, and different species and splice variants of C-CAM have shown differences in temperature and cation dependence when expressed in different cell types. Here, we have analyzed the binding mechanism of rat C-CAM2athat was expressed in CHO cells. In this system C-CAM2a-mediated adhesion was calcium- and temperature-independent. C-CAM2a-transfected cells did not adhere to nontransfected cells, demonstrating that the binding was homophilic. Cells transfected with C-CAM2ain which the N-terminal Ig-domain (D1) was deleted did not aggregate, and cells with intact C-CAM2acould not bind to these cells. This was in contrast to cells that were transfected with C-CAM2ain which the fourth Ig-like domain (D4) had been deleted; they both aggregated and bound to cells with intact C-CAM2a.Thus, C-CAM2amediates intercellular adhesion of CHO cells by a homophilic mechanism, in which the D1 domain binds reciprocally to a D1 domain on an opposed C-CAM molecule.  相似文献   

9.
10.
Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.  相似文献   

11.
12.
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by interfering with the function of BST-2/tetherin, a cellular protein inhibiting virus release. The Vpu protein encoded by NL4-3, a widely used HIV-1 laboratory strain, antagonizes human BST-2 but not monkey or murine BST-2, leading to the conclusion that BST-2 antagonism by Vpu is species specific. In contrast, we recently identified several primary Vpu isolates, such as Vpu of HIV-1DH12, capable of antagonizing both human and rhesus BST-2. Here we report that while Vpu interacts with human BST-2 primarily through their respective transmembrane domains, antagonism of rhesus BST-2 by Vpu involved an interaction of their cytoplasmic domains. Importantly, a Vpu mutant carrying two mutations in its transmembrane domain (A14L and W22A), rendering it incompetent for interaction with human BST-2, was able to interact with human BST-2 carrying the rhesus BST-2 cytoplasmic domain and partially neutralized the ability of this BST-2 variant to inhibit viral release. Bimolecular fluorescence complementation analysis to detect Vpu–BST-2 interactions suggested that the physical interaction of Vpu with rhesus or chimpanzee BST-2 involves a 5-residue motif in the cytoplasmic domain of BST-2 previously identified as important for the antagonism of monkey and great ape BST-2 by simian immunodeficiency virus (SIV) Nef. Thus, our study identifies a novel mechanism of antagonism of monkey and great ape BST-2 by Vpu that targets the same motif in BST-2 used by SIV Nef and might explain the expanded host range observed for Vpu isolates in our previous study.  相似文献   

13.
14.
A fractal analysis is presented for the binding and dissociation of different cancer markers on biosensor surfaces. The data analyzed include putrescine in solution to PDDA/APTES/MWCNT/Puo-modified GCE (glassy carbon electrode) () and vascular endothelial growth factor (VEGF) in solution to the soluble form of the VEGF receptor (SFlt-1 or VEGF-1) immobilized on a sensor chip (). Single- and dual-fractal models were used to fit the data. Values of the binding and dissociation rate coefficient(s), affinity values, and the fractal dimensions were obtained from the regression analysis provided by Corel Quattro Pro 8.0 (). The binding rate coefficients and the affinity values are sensitive to the degree of heterogeneity on the sensor chip surface. Predictive equations are developed for the binding rate coefficient as a function of the heterogeneity present on the biosensor chip surface. The analysis presented provides physical insights into these cancer biomarker-receptor reactions occurring on the different biosensor surfaces.  相似文献   

15.
Helicobacter pylori bacteria cultured in a chemically defined medium without serum readily adhere to a variety of abiotic surfaces. Growth produces microcolonies that spread to cover the entire surface, along with a planktonic subpopulation. Serum inhibits adherence. Initial attachment is protein mediated, but other molecules are responsible for more permanent attachment.  相似文献   

16.
17.
18.
19.
We recently reported that peritumoral CpG-ODN treatment, activating TLR-9 expressing cells in tumor microenvironment, induces modulation of genes involved in DNA repair and sensitizes cancer cells to DNA-damaging cisplatin treatment. Here, we investigated whether this treatment induces modulation of miRNAs in tumor cells and their relevance to chemotherapy response. Array analysis identified 20 differentially expressed miRNAs in human IGROV-1 ovarian tumor cells from CpG-ODN-treated mice versus controls (16 down- and 4 up-regulated). Evaluation of the role of the 3 most differentially expressed miRNAs on sensitivity to cisplatin of IGROV-1 cells revealed significantly increased cisplatin cytotoxicity upon ectopic expression of hsa-miR-302b (up-modulated in our array), but no increased effect upon reduced expression of hsa-miR-424 or hsa-miR-340 (down-modulated in our array). Accordingly, hsa-miR-302b expression was significantly associated with time to relapse or overall survival in two data sets of platinum-treated ovarian cancer patients. Use of bio-informatics tools identified 19 mRNAs potentially targeted by hsa-miR-302b, including HDAC4 gene, which has been reported to mediate cisplatin sensitivity in ovarian cancer. Both HDAC4 mRNA and protein levels were significantly reduced in IGROV-1 cells overexpressing hsa-miR-302b. Altogether, these findings indicate that hsa-miR-302b acts as a “chemosensitizer” in human ovarian carcinoma cells and may represent a biomarker able to predict response to cisplatin treatment. Moreover, the identification of miRNAs that improve sensitivity to chemotherapy provides the experimental underpinning for their possible future clinical use.  相似文献   

20.
Fish Rhabdovirus Cell Entry Is Mediated by Fibronectin   总被引:6,自引:0,他引:6       下载免费PDF全文
Three monoclonal antibodies (MAbs) generated against rainbow trout gonad cells (RTG-2) have been selected for their ability to protect cells from the viral hemorrhagic septicemia virus (VHSV) infection, a salmonid rhabdovirus. Protection from infection was restricted to the salmonid-derived cell lines indicating species specificity of the blocking MAbs. Surprisingly, the blocking activity of these MAbs was also effective against other nonantigenically related fish rhabdoviruses. Indirect immunofluorescence and immunoelectron microscopy observations demonstrated that the three MAbs were all directed against an abundant cell plasma membrane component, and immunoprecipitation studies indicated that the target consisted of a heterodimeric complex with molecular masses of 200 and 44 kDa. Biochemical data provided the following evidence that fibronectin is part of this complex and that it could represent the main receptor for fish rhabdoviruses. (i) An antiserum generated against the 200-kDa protein reacted against the recombinant rainbow trout fibronectin expressed in Escherichia coli. (ii) The purified rainbow trout fibronectin was able to bind specifically to VHSV. To our knowledge, this is the first identification of a cellular component acting as a primary receptor for a virus replicating in lower vertebrates and, more interestingly, for viruses belonging to the Rhabdoviridae family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号