首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain mutations in BRCA1 and BRCA2 genes are frequent in the Ashkenazi Jewish population. Several factors contribute to this increased frequency, including consanguineous marriages and an event known as a “bottleneck”, which occurred in the past and caused a drastic reduction in the genetic variability of this population. Several studies were performed over the years in an attempt to elucidate the role of BRCA1 and BRCA2 genes in susceptibility to breast cancer. The aim of this study was to estimate the carrier frequency of certain common mutations in the BRCA1 (185delAG and 5382insC) and BRCA2 (6174delT) genes in an Ashkenazi Jewish population from Porto Alegre, Brazil. Molecular analyses were done by PCR followed by RFLP (ACRS). The carrier frequencies for BRCA1 185delAG and 5382insC were 0.78 and 0 respectively, and 0.4 for the BRCA2 6174deT mutation. These findings are similar to those of some prior studies but differ from others, possibly due to excluding individuals with a personal or family history of cancer. Our sample was drawn from the community group and included individuals with or without a family or personal history of cancer. Furthermore, increased dispersion among Ashkenazi subpopulations may be the result of strong genetic drift and/or admixture. It is therefore necessary to consider the effects of local admixture on the mismatch distributions of various Jewish populations.  相似文献   

2.
The most important cause of developing hereditary breast cancer is germline mutations occurring in breast cancer (BCs) susceptibility genes, for example, BRCA1, BRCA2, TP53, CHEK2, PTEN, ATM, and PPM1D. Many BC susceptibility genes can be grouped into two classes, high- and low-penetrance genes, each of which interact with multiple genes and environmental factors. However, the penetrance of genes can also be represented by a spectrum, which ranges between high and low. Two of the most common susceptibility genes are BRCA1 and BRCA2, which perform vital cellular functions for repair of homologous DNA. Loss of heterozygosity accompanied by hereditary mutations in BRCA1 or BRCA2 increases chromosomal instability and the likelihood of cancer, as well as playing a key role in stimulating malignant transformation. With regard to pathological features, familial breast cancers caused by BRCA1 mutations usually differ from those caused by BRCA2 mutations and nonfamilial BCs. It is essential to acquire an understanding of these pathological features along with the genetic history of the patient to offer an individualized treatment. Germline mutations in BRCA1 and BRCA2 genes are the main genetic and inherited factors for breast and ovarian cancer. In fact, these mutations are very important in developing early onset and increasing the risk of familial breast and ovarian cancer and responsible for 90% of hereditary BC cases. Therefore, according to the conducted studies, screening of BRCA1 and BRCA2 genes is recommended as an important marker for early detection of all patients with breast or ovarian cancer risk with family history of the disease. In this review, we summarize the role of hereditary genes, mainly BRCA1 and BRCA2, in BC.  相似文献   

3.
Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin.  相似文献   

4.
The gene BRCA2, first identified as a breast cancer susceptibility locus in humans, encodes a protein involved in DNA repair in mammalian cells and mutations in this gene confer increased risk of breast cancer. Here we report a functional characterisation of a Trypanosoma brucei BRCA2 (TbBRCA2) orthologue and show that the protein interacts directly with TbRAD51. A further protein-protein interaction screen using TbBRCA2 identified other interacting proteins, including a trypanosome orthologue of CDC45 which is involved in initiation and progression of the replication fork complex during DNA synthesis. Deletion of the TbBRCA2 gene retards cell cycle progression during S-phase as judged by increased incorporation of BrdU and an increased percentage of cells with one nucleus and two kinetoplasts. These results provide insights into the potential role played by BRCA2 in DNA replication and reveal a novel interaction that couples replication and recombination in maintaining integrity of the genome.  相似文献   

5.
Triple-negative breast cancer (TNBC) is an aggressive form of breast carcinoma with a poor prognosis. Recent evidence suggests that some patients with TNBC harbour germ-line mutations in DNA repair genes which may render their tumours susceptible to novel therapies such as treatment with PARP inhibitors. In the present study, we have investigated a hospital-based series of 40 German patients with TNBC for the presence of germ-line mutations in BRCA1, BRCA2, PALB2, and BRD7 genes. Microfluidic array PCR and next-generation sequencing was used for BRCA1 and BRCA2 analysis while conventional high-resolution melting and Sanger sequencing was applied to study the coding regions of PALB2 and BRD7, respectively. Truncating mutations in BRCA1 were found in six patients, and truncating mutations in BRCA2 and PALB2 were detected in one patient each, whereas no truncating mutation was identified in BRD7. One patient was a double heterozygote for the PALB2 mutation, c.758insT, and a BRCA1 mutation, c.927delA. Our results confirm in a hospital-based setting that a substantial proportion of German TNBC patients (17.5%) harbour germ-line mutations in genes involved in homology-directed DNA repair, with a preponderance of BRCA1 mutations. Triple-negative breast cancer should be considered as an additional criterion for future genetic counselling and diagnostic sequencing.  相似文献   

6.
7.
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer‐related deaths in women worldwide. In this study, a large Chinese pedigree with breast cancer including a proband and two female patients was recruited and a familial history of breast cancer was collected by questionnaire. Clinicopathological assessments and neoadjuvant therapy‐related information were obtained for the proband. Blood samples were taken, and gDNA was extracted. The BRCA1/2 and PALB2 genes were screened using next‐generation sequencing by a targeted gene panel. We have successfully identified a novel, germline heterozygous, missense mutation of the gene BRCA2: c.7007G>T, p.R2336L, which is likely to be pathogenic in the proband and her elder sister who both had breast cancer. Furthermore, the risk factors for developing breast cancer in this family are discussed. Thus, genetic counselling and long‐term follow‐up should be provided for this family of breast cancer patients as well as carriers carrying a germline variant of BRCA2: c.7007G>T (p.R2336L).  相似文献   

8.
BackgroundThe incidence of breast cancer is growing rapidly worldwide (1.7 million new cases and 600,000 deaths per year). Moreover, about 10% of breast cancer cases occur in young women under the age of 45. The aim of the study was to report a rare case of BRCA 1-mutated breast cancer in a young patient with multiple affected relatives. Breast cancer is due to a genetic predisposition with BRCA1 and BRCA2 representing a significant proportion of families with a very high risk of developing the disease over a lifetime of up to 50–80%.Case presentationIn this paper we report a case of a 29-year-old woman with a confirmed diagnosis of left breast carcinoma.ConclusionsMutations of the BRCA1 gene were revealed in the patient, in two of her sisters, brother and brother’s daughter.  相似文献   

9.
《PloS one》2013,8(2)
The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.  相似文献   

10.

Background

In Asia, breast cancer is characterised by an early age of onset: In Malaysia, approximately 50% of cases occur in women under the age of 50 years. A proportion of these cases may be attributable, at least in part, to genetic components, but to date, the contribution of genetic components to breast cancer in many of Malaysia''s ethnic groups has not been well-characterised.

Methodology

Given that hereditary breast carcinoma is primarily due to germline mutations in one of two breast cancer susceptibility genes, BRCA1 and BRCA2, we have characterised the spectrum of BRCA mutations in a cohort of 37 individuals with early-onset disease (≤40 years) and no reported family history. Mutational analysis of BRCA1 and BRCA2 was conducted by full sequencing of all exons and intron-exon junctions.

Conclusions

Here, we report a total of 14 BRCA1 and 17 BRCA2 sequence alterations, of which eight are novel (3 BRCA1 and 5 BRCA2). One deleterious BRCA1 mutation and 2 deleterious BRCA2 mutations, all of which are novel mutations, were identified in 3 of 37 individuals. This represents a prevalence of 2.7% and 5.4% respectively, which is consistent with other studies in other Asian ethnic groups (4–9%).  相似文献   

11.
《Epigenetics》2013,8(11):1225-1229
Germline mutations in the BRCA1 or BRCA2 genes are associated with an increased risk of breast and ovarian cancer development. Both genes are involved in DNA repair, and tumors harboring genetic defects in them are thought to be more sensitive to DNA-damaging agents used in chemotherapy. However, as only a minority of breast and ovarian cancer patients carry BRCA1 or BRCA2 mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, BRCA1 CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as BRCA1 mutations. Most importantly, BRCA1 hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin.  相似文献   

12.
Although germline mutations in BRCA1 highly predispose women towards breast and ovarian cancer, few substantial improvements in preventing or treating such cancers have been made. Importantly, BRCA1 function is closely associated with DNA damage repair, which is required for genetic stability. Here, we examined the efficacy of radiotherapy, assessing the accumulation of genetic instabilities, in the treatment of BRCA1-associated breast cancer using a Brca1-mutant mouse model. Treatment of Brca1-mutant tumor-engrafted mice with X-rays reduced tumor progression by 27.9% compared with untreated controls. A correlation analysis of irradiation responses and biomarker profiles in tumors at baseline identified differences between responders and non-responders at the protein level (pERα, pCHK2, p53, and EpCAM) and at the SOX2 target expression level. We further demonstrated that combined treatment of Brca1-mutant mammary tumors with irradiation and AZD2281, which inhibits PARP, significantly reduced tumor progression and extended survival. Our findings enhance the understanding of DNA damage and biomarker responses in BRCA1-associated mammary tumors and provide preclinical evidence that radiotherapy with synthetic DNA damage is a potential strategy for the therapeutic management of BRCA1-associated breast cancer.  相似文献   

13.
Meiotic crossover(CO) formation between homologous chromosomes ensures their subsequent proper segregation and generates genetic diversity among offspring. In maize, however, the mechanisms that modulate CO formation remain poorly characterized. Here, we found that both maize BREAST CANCER SUSCEPTIBILITY PROTEIN 2(BRCA2) and AAA-ATPase FIDGETIN-LIKE-1(FIGL1)act as positive factors of CO formation by controlling the assembly or/and stability of two conserved DNA recombinases RAD51 and DMC1 filame...  相似文献   

14.
BackgroundThe spectrum of BRCA1 and BRCA2 mutations varies among populations; however, some mutations may be frequent in particular ethnic groups due to the “founder” effect. The c.3700_3704del mutation was previously described as a recurrent BRCA1 variant in Eastern European countries. This study aimed to investigate the frequency of c.3700_3704del BRCA1 mutation in Albanian breast and ovarian cancer patients from North Macedonia and Kosovo.Materials and methodsA total of 327 patients with invasive breast and/or ovarian cancer (111 Albanian women from North Macedonia and 216 from Kosovo) were screened for 13 recurrent BRCA1/2 mutations. Targeted NGS with a panel of 94 cancer-associated genes including BRCA1 and BRCA2 was performed in a selected group of 118 patients.ResultsWe have identified 21 BRCA1/2 pathogenic variants, 17 (14 BRCA1 and 3 BRCA2) in patients from Kosovo (7.9%) and 4 (1 BRCA1 and 3 BRCA2) in patients from North Macedonia (3.6%). All BRCA1/2 mutations were found in one patient each, except for c.3700_3704del BRCA1 mutation which was observed in 14 unrelated families, all except one originating from Kosovo. The c.3700_3704del mutation accounts for 93% of BRCA1 mutation positive cases and is present with a frequency of 6% among breast cancer patients from Kosovo.ConclusionsThis is the first report of BRCA1/2 mutations among breast and ovarian cancer patients from Kosovo. The finding that BRCA1 c.3700_3704del represents a founder mutation in Kosovo with the highest worldwide reported frequency supports the implementation of fast and low-cost screening protocol, regardless of the family history and even a pilot population-based screening in at-risk population.  相似文献   

15.
Breast cancer is the most prevalent cancer type in women. Accumulating evidence indicates that the fidelity of double-strand break repair in response to DNA damage is an important step in mammary neoplasias. The RAD51 and BRCA1 proteins are involved in the repair of double-strand DNA breaks by homologous recombination. In this study, we evaluated loss of heterozygosity (LOH) in the RAD51 and BRCA1 regions, and their association with breast cancer. The polymorphic markers D15S118, D15S214 and D15S1006 were the focus for RAD51, and D17S855 and D17S1323 for BRCA1. Genomic deletion detected by allelic loss varied according to the regions tested, and ranged from 29 to 46% of informative cases for the RAD51 region and from 38 to 42% of informative cases for the BRCA1 region. 25% of breast cancer cases displayed LOH for at least one studied marker in the RAD51 region exclusively. On the other hand, 31% of breast cancer cases manifested LOH for at least one microsatellite marker concomitantly in the RAD51 and BRCA1 regions. LOH in the RAD51 region, similarly as in the BRCA1 region, appeared to correlate with steroid receptor status. The obtained results indicate that alteration in the RAD51 region may contribute to the disturbances of DNA repair involving RAD51 and BRCA1 and thus enhance the risk of breast cancer development.  相似文献   

16.
This study aimed to determine whether telomere length (TL) is a marker of cancer risk or genetic status amongst two cohorts of BRCA1 and BRCA2 mutation carriers and controls. The first group was a prospective set of 665 male BRCA1/2 mutation carriers and controls (mean age 53 years), all healthy at time of enrolment and blood donation, 21 of whom have developed prostate cancer whilst on study. The second group consisted of 283 female BRCA1/2 mutation carriers and controls (mean age 48 years), half of whom had been diagnosed with breast cancer prior to enrolment. TL was quantified by qPCR from DNA extracted from peripheral blood lymphocytes. Weighted and unweighted Cox regressions and linear regression analyses were used to assess whether TL was associated with BRCA1/2 mutation status or cancer risk. We found no evidence for association between developing cancer or being a BRCA1 or BRCA2 mutation carrier and telomere length. It is the first study investigating TL in a cohort of genetically predisposed males and although TL and BRCA status was previously studied in females our results don''t support the previous finding of association between hereditary breast cancer and shorter TL.  相似文献   

17.
《Cancer epidemiology》2014,38(4):382-385
Mutation in the BRCA1 gene increases the risk of the person developing breast and/or ovarian cancer. The prevalence and spectrum of large genomic rearrangements (LGRs) varies considerably among different tested populations. In our previous study we described three LGRs in BRCA1 (exons 13–19, exon 17 and exon 22) in Polish families at high risk of breast and ovarian cancer. In this study we analyzed a group of 550 unselected women with ovarian cancer for the three previously identified LGRs. We used a rapid, single-step and closed-tube method: high-resolution melting analysis (HRMA). In this group of unrelated patients diagnosed with ovarian cancer we found three cases with the same deletions of exon 22. This is the first recurrent large deletion in BRCA1 found in Poland. We conclude that screening for the exon 22 deletion in BRCA1 should be included in the Polish BRCA1 genetic testing panel and possibly extended into other Slavic populations.  相似文献   

18.
Silencing of the tumor suppressor protein BRCA2 and its detection by conventional biochemical analyses represent a great technical challenge owing to the large size of the human BRCA2 protein (approximately 390 kDa). We report modifications of standard siRNA transfection and immunoblotting protocols to silence human BRCA2 and detect endogenous BRCA2 protein, respectively, in human epithelial cell lines. Key steps include a high siRNA to transfection reagent ratio and two subsequent rounds of siRNA transfection within the same experiment. Using these and other modifications to the standard protocol we consistently achieve more than 70% silencing of the human BRCA2 gene as judged by immunoblotting analysis with anti-BRCA2 antibodies. In addition, denaturation of the cell lysates at 55 °C instead of the conventional 70-100 °C and other technical optimizations of the immunoblotting procedure allow detection of intact BRCA2 protein even when very low amounts of starting material are available or when BRCA2 protein expression levels are very low. Efficient silencing of BRCA2 in human cells offers a valuable strategy to disrupt BRCA2 function in cells with intact BRCA2, including tumor cells, to examine new molecular pathways and cellular functions that may be affected by pathogenic BRCA2 mutations in tumors. Adaptation of this protocol for efficient silencing and analysis of other ''large'' proteins like BRCA2 should be readily achievable.  相似文献   

19.
Fanconi anemia (FA) is an autosomal recessive human disease characterized by genomic instability and a marked increase in cancer risk. The importance of FANCD1 gene is manifested by the fact that deleterious amino acid substitutions were found to confer susceptibility to hereditary breast and ovarian cancers. Attaining experimental knowledge about the possible disease-associated substitutions is laborious and time consuming. The recent introduction of genome variation analyzing in silico tools have the capability to identify the deleterious variants in an efficient manner. In this study, we conducted in silico variation analysis of deleterious non-synonymous SNPs at both functional and structural level in the breast cancer and FA susceptibility gene BRCA2/FANCD1. To identify and characterize deleterious mutations in this study, five in silico tools based on two different prediction methods namely pathogenicity prediction (SIFT, PolyPhen, and PANTHER), and protein stability prediction (I-Mutant 2.0 and MuStab) were analyzed. Based on the deleterious scores that overlap in these in silico approaches, and the availability of three-dimensional structures, structure analysis was carried out with the major mutations that occurred in the native protein coded by FANCD1/BRCA2 gene. In this work, we report the results of the first molecular dynamics (MD) simulation study performed to analyze the structural level changes in time scale level with respect to the native and mutated protein complexes (G25R, W31C, W31R in FANCD1/BRCA2-PALB2, and F1524V, V1532F in FANCD1/BRCA2-RAD51). Analysis of the MD trajectories indicated that predicted deleterious variants alter the structural behavior of BRCA2-PALB2 and BRCA2-RAD51 protein complexes. In addition, statistical analysis was employed to test the significance of these in silico tool predictions. Based on these predictions, we conclude that the identification of disease-related SNPs by in silico methods, in combination with MD approach has the potential to create personalized tools for the diagnosis, prognosis, and treatment of diseases. The methods reviewed here generated a considerable amount of valuable data, but also the need for further validation.  相似文献   

20.
Germline mutations in the BRCA1 and BRCA2 genes contribute to approximately 18% of hereditary ovarian cancers conferring an estimated lifetime risk from 15% to 50%. A variable incidence of mutations has been reported for these genes in ovarian cancer cases from different populations. In Greece, six mutations in BRCA1 account for 63% of all mutations detected in both BRCA1 and BRCA2 genes. This study aimed to determine the prevalence of BRCA1 mutations in a Greek cohort of 106 familial ovarian cancer patients that had strong family history or metachronous breast cancer and 592 sporadic ovarian cancer cases. All 698 patients were screened for the six recurrent Greek mutations (including founder mutations c.5266dupC, p.G1738R and the three large deletions of exon 20, exons 23–24 and exon 24). In familial cases, the BRCA1 gene was consequently screened for exons 5, 11, 12, 20, 21, 22, 23, 24. A deleterious BRCA1 mutation was found in 43/106 (40.6%) of familial cancer cases and in 27/592 (4.6%) of sporadic cases. The variant of unknown clinical significance p.V1833M was identified in 9/698 patients (1.3%). The majority of BRCA1 carriers (71.2%) presented a high-grade serous phenotype. Identifying a mutation in the BRCA1 gene among breast and/or ovarian cancer families is important, as it enables carriers to take preventive measures. All ovarian cancer patients with a serous phenotype should be considered for genetic testing. Further studies are warranted to determine the prevalence of mutations in the rest of the BRCA1 gene, in the BRCA2 gene, and other novel predisposing genes for breast and ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号