首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In budding yeast, a highly conserved heterodimeric protein complex that is composed of the Rpb4 and Rpb7 proteins within RNA polymerase II shuttles between the nucleus and cytoplasm where it coordinates various steps of gene expression by associating with mRNAs. Although distinct stages of gene expression potentially contribute to the regulation of cellular lifespan, little is known about the underlying mechanisms. Here, we addressed the role of the dissociable Rpb4/7 heterodimeric protein complex in the regulation of replicative lifespan during various stages of gene expression in the yeast Saccharomyces cerevisiae. We observed that the loss of Rpb4 resulted in a shortened lifespan. In contrast, we found that defects in the dissociation of Rpb4/7 from the RNA polymerase core complex and in translation initiation steps affected by Rpb4/7 did not impact lifespan. Tandem affinity purification experiments demonstrated that Rpb7 physically associates with Tpk2 and Pat1, which are both implicated in mRNA degradation. Consistent with this data, the loss of the mRNA decay regulators Pat1 and Dhh1 reduced the cellular lifespan. In summary, our findings further reinforce the pivotal role of Rpb4/7 in the coordination of distinct steps of gene expression and suggest that among the many stages of gene expression, mRNA decay is a critical process that is required for normal replicative lifespan.  相似文献   

4.
5.
Linear RNA amplification using T7 RNA polymerase is useful in genome-wide analysis of gene expression using DNA microarrays, but exponential amplification using polymerase chain reaction (PCR) is still required for cDNA library preparation from single-cell quantities of RNA. We have designed a small RNA molecule called chum-RNA that has enabled us to prepare a single-cell cDNA library after four rounds of T7-based linear amplification, without using PCR amplification. Chum-RNA drove cDNA synthesis from only 0.49 femtograms of mRNA (730 mRNA molecules) as a substrate, a quantity that corresponds to a minor population of mRNA molecules in a single mammalian cell. Analysis of the independent cDNA clone of this library (6.6 × 105 cfu) suggests that 30-fold RNA amplification occurred in each round of the amplification process. The size distribution and representation of mRNAs in the resulting one-cell cDNA library retained its similarity to that of the million-cell cDNA library. The use of chum-RNA might also facilitate reactions involving other DNA/RNA modifying enzymes whose Michaelis constant (Km) values are around 1 mM, allowing them to be activated in the presence of only small quantities of substrate.  相似文献   

6.
7.
Many biological processes cannot be fully understood without detailed knowledge of RNA metabolism. The continuous breakdown and resynthesis of prokaryotic mRNA permit rapid production of new kinds of proteins. In this way, mRNA levels can regulate protein synthesis and cellular growth. Analysing mRNA degradation in prokaryotes has been particularly difficult because most mRNA undergo rapid exponential decay. Prokaryotic mRNAs differ in their susceptibility to degradation by endonucleases and exonucleases, possibly because of variation in their sequencing and structure. In spite of numerous studies, details of mRNA degradation are still largely unknown. This review highlights those aspects of mRNA metabolism which seem most influential in the regulation of gene expression.  相似文献   

8.
9.
10.
11.
The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.  相似文献   

12.
13.
14.
15.
YsrH is a novel cis-encoded sRNA located on the opposite strand to fabH2, which is essential for fatty acid biosynthesis in bacteria. In this study, YsrH-mediated regulation of fabH2 expression was investigated in Yersinia pseudotuberculosis. Constitutive and inducible over-expression of YsrH decreased the mRNA level of fabH2, while expression of downstream fabD and fabG remained unaffected. Polynucleotide phosphorylase (PNPase) also played an important role in this regulation process by mediating YsrH decay in the exponential phase. Thus, our data defines a cis-encoded sRNA that regulates fatty acid synthesis via a regulatory mechanism also involving PNPase.  相似文献   

16.
Transposon mutagenesis and single-gene deletion are two methods applied in genome-wide gene knockout in bacteria 1,2. Although transposon mutagenesis is less time consuming, less costly, and does not require completed genome information, there are two weaknesses in this method: (1) the possibility of a disparate mutants in the mixed mutant library that counter-selects mutants with decreased competition; and (2) the possibility of partial gene inactivation whereby genes do not entirely lose their function following the insertion of a transposon. Single-gene deletion analysis may compensate for the drawbacks associated with transposon mutagenesis. To improve the efficiency of genome-wide single gene deletion, we attempt to establish a high-throughput technique for genome-wide single gene deletion using Streptococcus sanguinis as a model organism. Each gene deletion construct in S. sanguinis genome is designed to comprise 1-kb upstream of the targeted gene, the aphA-3 gene, encoding kanamycin resistance protein, and 1-kb downstream of the targeted gene. Three sets of primers F1/R1, F2/R2, and F3/R3, respectively, are designed and synthesized in a 96-well plate format for PCR-amplifications of those three components of each deletion construct. Primers R1 and F3 contain 25-bp sequences that are complementary to regions of the aphA-3 gene at their 5'' end. A large scale PCR amplification of the aphA-3 gene is performed once for creating all single-gene deletion constructs. The promoter of aphA-3 gene is initially excluded to minimize the potential polar effect of kanamycin cassette. To create the gene deletion constructs, high-throughput PCR amplification and purification are performed in a 96-well plate format. A linear recombinant PCR amplicon for each gene deletion will be made up through four PCR reactions using high-fidelity DNA polymerase. The initial exponential growth phase of S. sanguinis cultured in Todd Hewitt broth supplemented with 2.5% inactivated horse serum is used to increase competence for the transformation of PCR-recombinant constructs. Under this condition, up to 20% of S. sanguinis cells can be transformed using ~50 ng of DNA. Based on this approach, 2,048 mutants with single-gene deletion were ultimately obtained from the 2,270 genes in S. sanguinis excluding four gene ORFs contained entirely within other ORFs in S. sanguinis SK36 and 218 potential essential genes. The technique on creating gene deletion constructs is high throughput and could be easy to use in genome-wide single gene deletions for any transformable bacteria.  相似文献   

17.

Background  

Messenger RNA decay is an important mechanism for controlling gene expression in all organisms. The rate of the mRNA degradation directly affects the steady state concentration of mRNAs and therefore influences the protein synthesis. RNaseE has a key importance for the general mRNA decay in E.coli. While RNaseE initiates the degradation of most mRNAs in E.coli, it is likely that the enzyme is also responsible for the degradation of recombinant RNAs. As RNaseE is essential for cell viability and knockout mutants cannot be cultured, we investigated the possibility for a down-regulation of the intracellular level of RNaseE by antisense RNAs. During this study, an antisense RNA based approach could be established which revealed a strong reduction of the intracellular level of RNaseE in E.coli.  相似文献   

18.
Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250?000 library transformants for conditional growth inhibitory recombinant clones from two shotgun genomic libraries of E.?coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes, while 18 originated from nonessential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12-fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E.?coli using regulated asRNA expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号