共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
Haynes V Elfering S Traaseth N Giulivi C 《Journal of bioenergetics and biomembranes》2004,36(4):341-346
Nitric oxide is generated in vivo by nitric-oxide synthase (NOS) during the conversion of L-Arg to citrulline. Using a variety of biological systems and approaches emerging evidence has been accumulated for the occurrence of a mitochondrial NOS (mtNOS), identified as the alpha isoform of neuronal or NOS-1. Under physiological conditions, the production of nitric oxide by mitochondria has an important implication for the maintenance of the cellular metabolism, i.e. modulates the oxygen consumption of the organelles through the competitive (with oxygen) and reversible inhibition of cytochrome c oxidase. The transient inhibition suits the continuously changing energy and oxygen requirements of the tissue; it is a short-term regulation with profound pathophysiological consequences. This review describes the identification of mtNOS and the role of posttranslational modifications on mtNOS' activity and regulation. 相似文献
4.
采用单特异引物PCR克隆法,得到大鼠诱导型一氧化氮合酶(iNOS)基因转录调控区DNA片段.核酸序列分析证实,大鼠iNOS基因的5′-侧翼区含有IFN-γ和TNF-α应答元件及NF-κB结合位点的保守序列.这些保守序列的位置及排列显著区别于人和小鼠的iNOS基因.电泳迁移率改变分析(EMSA)表明,VSMC受IL-1和IFN-γ刺激后,细胞核内产生某种可与iNOS基因5′-侧翼区特异结合的核蛋白因子. 相似文献
5.
高原鼠兔Ochotona curzoniae,世居在青藏高原海拔3000~5000 m的地区,是一种典型的低氧耐受哺乳动物。一氧化氮(NO)作为一种有效的血管舒张因子,在预防低氧诱导的低氧性肺血管收缩反应和肺动脉高压中发挥着重要功能。诱导型一氧化氮合酶(iNOS)是一种催化L-精氨酸合成NO的重要酶,受低氧调控。本研究经RTPCR和cDNA 3’末端快速扩增(3’RACE)方法成功克隆了高原鼠兔iNOS基因cDNA序列,并对其分子特征进行了分析。结果显示:高原鼠兔iNOS cDNA全长为3981 bp,开放阅读框(ORF)为3450 bp,共编码1149个氨基酸残基;预测的蛋白序列与北美鼠兔、兔、人、大鼠、小鼠、狗以及猪的同源性分别为98%、87%、82%、78%、78%、82%和83%;蛋白结构预测结果显示高原鼠兔iNOS具有氧化域、还原域及黄素腺苷酸结合区域等iNOS所具有的典型结构域;基于iNOS的最大似然树和贝叶斯树均支持鼠兔与兔有最近的亲缘关系,与形态或其他分子标记构建的进化关系相符;分子进化分析检测到高原鼠兔iNOS中存在3个正选择位点——32T、33Y和46R,但不同模型的结果表明哺乳动物iNOS基因所受选择以净化选择为主,不支持iNOS在高原鼠兔支系发生适应性进化。该研究为揭示高原鼠兔iNOS的表达特征及其在低氧适应中的作用与调控机制研究奠定了初步基础。 相似文献
6.
诱导型一氧化氮合酶(iNOS)基因表达的调控 总被引:11,自引:0,他引:11
一氧化氮(NO)自由基有多方面的生物学功能。随着研究的深入,发现NO能与超氧阴离子(O-2·)反应生成激发态亚硝酸(ONOOH*),它与靶分子能产生羟自由基(·OH)和二氧化氮(NO2)样反应,在体内原先认为的一些NO效应,现在知道主要是由于ONOO... 相似文献
7.
8.
9.
诱导型一氧化氮合酶与疾病 总被引:4,自引:0,他引:4
炎症是众多疾病如自体免疫紊乱、神经退行性病变、心血管疾病和癌症发展的病理机制,诱导型一氧化氮合酶在炎症过程中被诱导表达,产生过量的一氧化氮,引发炎症级联反应,进而导致以上多种疾病发生。抑制诱导型一氧化氮合酶表达在体内体外实验及临床使用中均体现抗炎效果和症状改善。本文综述了诱导型一氧化氮合酶在炎症过程中诱导表达及与各类重大疾病联系的最新进展,并展望了诱导型一氧化氮合酶抑制剂作为抗炎治疗策略的前景。 相似文献
10.
11.
12.
13.
Dahlia Minc-Golomb Gal Yadid Ilan Tsarfaty James H. Resau Joan P. Schwartz 《Journal of neurochemistry》1996,66(4):1504-1509
Abstract: In the CNS, nitric oxide (NO) functions as both neuromodulator and neurotoxic agent. In vivo neuronal expression of NO synthase (NOS) has been attributed to constitutive NOS—both the neuronal and the endothelial types. The other class of NOS—the inducible NOS (iNOS)—is known to mediate toxic effects of NO in various tissues. In this study, we show for the first time that direct intracerebellar injection of endotoxin and cytokine (lipopolysaccharide and interferon-γ) induced in vivo neuronal expression of the iNOS gene, as demonstrated by fluorescent in situ hybridization and immunohistochemical staining analyzed by confocal laser-scanning microscopy. This raises the possibility that neuronal iNOS might contribute significantly to the vulnerability of the brain to various insults. 相似文献
14.
Latika Nagpal Mohammad M. Haque Amit Saha Nirmalya Mukherjee Arnab Ghosh Brindaban C. Ranu Dennis J. Stuehr Koustubh Panda 《The Journal of biological chemistry》2013,288(27):19685-19697
Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases. 相似文献
15.
Norepinephrine Suppresses Inducible Nitric Oxide Synthase Activity in Rat Astroglial Cultures 总被引:7,自引:4,他引:3
Abstract: Exposure of primary rat astrocyte cultures to bacterial endotoxin lipopolysaccharide (LPS) causes expression of a Ca2+ -in-dependent form of nitric oxide synthase (NOS). In these cells, the presence of norepinephrine (NE) caused a dose-dependent inhibition of the LPS induction of NOS activity, with an IC50 value of 100 nMand significant suppression at 100 pAf. Short incubations (5-40 min) with NE were as effective as 24-h continuous exposure, and inhibition was observed up to the longest incubation period measured (56 h). In contrast, previously induced NOS activity was not affected by exposure to NE. The effects of NE were mediated primarily by binding to β-adrenergic receptors (β-ARs) because (a) the β-AR antagonist propranolol, but not the n-AR antagonist phentol-amine, could reverse the effects of NE; (b) the β-AR agonist isoproterenol. but not the a-AR agonist phenylephrine, was as effective as NE in blocking the effects of LPS; and (c) incubation with the cyclic AMP analogue dibutyryl cyclic AMP replicated the effects of NE. In contrast to astroglial cultures, LPS induction of NOS activity in RAW 264.7 macrophage cells was not affected by NE or dibutyryl cyclic AMP. These results indicate that in brain, inducible NOS in astrocytes can be regulated by neurotransmitter binding to glial receptors. 相似文献
16.
17.
Two morphologically distinct and physically separable defective phages have been found in Bacillus licheniformis NRS 243 after induction by mitomycin C. One of them (PBLB) is similar to the defective phage PBSX of B. subtilis, which has a density of 1.373 g/cm(3) in CsCl and a sedimentation coefficient of 160S. PBLB incorporates into its head mainly bacterial deoxyribonucleic acid (DNA) which has a sedimentation coefficient of 22S and a buoyant density in CsCl of 1.706 g/cm(3). The other phage (PBLA) has a morphology similar to the temperate phage phi105 of B. subtilis; the head diameter is about 66 nm, and it possesses a long and noncontractile tail. PBLA has a density of 1.484 g/cm(3) in CsCl and the phage-specific DNA, which is exclusively synthesized after induction by mitomycin C, has a density of 1.701 g/cm(3). PBLA DNA is double-stranded and has a sedimentation coefficient of 36S, corresponding to a molecular weight of 34 x 10(6) to 35 x 10(6) daltons. The phage DNA has one interruption per single strand, giving single-stranded segments with molecular weights of 13 x 10(6) and 4 x 10(6) daltons. Common sequences between the two phage DNA species and with their host DNA have been demonstrated by DNA-DNA hybridization studies. Both phage particles kill sensitive bacteria. However, all attempts thus far to find an indicator strain to support plaque formation have been unsuccessful. 相似文献
18.
Cytokine Induction of Inducible Nitric Oxide Synthase in an
Oligodendrocyte Cell Line 总被引:8,自引:2,他引:8
Abstract : The induction of inducible nitric oxide synthase (iNOS) by proinflammatory cytokines was studied in an oligodendrocyte progenitor cell line in relation to mitogen-activated protein kinase (MAPK) activation and cytokine-mediated cytotoxicity. When introduced individually to cultures of CG4 cells, the cytokines, i.e., tumor necrosis factor-α (TNFα), interleukin-1 (IL-1), and interferon-γ (IFNγ), had either minimal (TNFα) or no (IL-1 and IFNγ) detectable stimulatory effect on the production of nitric oxide. However, combinations of these factors, in particular, TNFα plus IFNγ, elicited a strong enhancement of nitric oxide synthesis and, as revealed by western blot and RT-PCR analysis, the expression of iNOS. TNFα and IL-1 were able to activate p38 MAPK in a time- and dose-dependent manner and together showed a combinatorial effect. In contrast, IFNγ neither activated on its own nor enhanced the activation of p38 MAPK in response to TNFα and IL-1. However, a specific inhibitor of p38 MAPK, i.e., SB203580, inhibited the induction of iNOS in cytokine combination-treated cells in a dose-dependent manner, thereby suggesting a role for the MAPK cascade in regulating the induction of iNOS gene expression in cytokine-treated cells. Blocking of nitric oxide production by an inhibitor of iNOS, i.e., nitro-L-arginine methyl ester, had a minimal protective effect against cytokine-mediated cytotoxicity that occurred before the elevation of nitric oxide levels, thereby indicating temporal and functional dissociation of nitric oxide production from cell killing. 相似文献
19.
20.
Nitric oxide is known to contribute to neuronal damage as well as to peripheral neuronal regeneration following injury. Sciatic
nerve injury is a common and serious complication of intramuscular injections. In order to ascertain the role of inducible
nitric oxide synthase (iNOS) in the injured sciatic nerve, we studied the expression of this enzyme by RT-PCR and immunohistochemistry,
in a rat model of sciatic nerve injury. In sham-operated control rats iNOS expression was undetectable by immunohistochemistry
and its mRNA level was also very low. In contrast, in the experimental group that was subjected to sciatic nerve injury, both
mRNA and protein of iNOS were found to be significantly elevated. The protein level of iNOS, as revealed by positive immunostaining,
peaked at 7 days post-surgery followed by a decrease. Similarly, the iNOS mRNA levels remained elevated at 1, 3, 7 days but
declined to very low level by day 21, after surgery. This study indicates that the increased expression of iNOS after sciatic
nerve injury in rats may contribute to nerve regeneration. Thus our results suggest that excessive expression of iNOS after
nerve injury is not conducive to nerve regeneration. 相似文献