首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avoidance of the negative affective (emotional) symptoms of nicotine withdrawal (e.g., anhedonia, anxiety) contributes to tobacco addiction. Establishing the minimal nicotine exposure conditions required to demonstrate negative affective withdrawal signs in animals, as well as understanding moderators of these conditions, could inform tobacco addiction-related research, treatment, and policy. The goal of this study was to determine the minimal duration of continuous nicotine infusion required to demonstrate nicotine withdrawal in rats as measured by elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior). Administration of the nicotinic acetylcholine receptor antagonist mecamylamine (3.0 mg/kg, s.c.) on alternate test days throughout the course of a 2-week continuous nicotine infusion (3.2 mg/kg/day via osmotic minipump) elicited elevations in ICSS thresholds beginning on the second day of infusion. Magnitude of antagonist-precipitated withdrawal did not change with further nicotine exposure and mecamylamine injections, and was similar to that observed in a positive control group receiving mecamylamine following a 14-day nicotine infusion. Expression of a significant withdrawal effect was delayed in nicotine-infused rats receiving mecamylamine on all test days rather than on alternate test days. In a separate study, rats exhibited a transient increase in ICSS thresholds following cessation of a 2-day continuous nicotine infusion (3.2 mg/kg/day). Magnitude of this spontaneous withdrawal effect was similar to that observed in rats receiving a 9-day nicotine infusion. Our findings demonstrate that rats exhibit antagonist-precipitated and spontaneous nicotine withdrawal following a 2-day continuous nicotine infusion, at least under the experimental conditions studied here. Magnitude of these effects were similar to those observed in traditional models involving more prolonged nicotine exposure. Further development of these models, including evaluation of more clinically relevant nicotine dosing regimens and other measures of nicotine withdrawal (e.g., anxiety-like behavior, somatic signs), may be useful for understanding the development of the nicotine withdrawal syndrome.  相似文献   

2.
Ch-mAb7F9, a human-mouse chimeric monoclonal antibody (mAb) designed to bind (+)-methamphetamine (METH) with high affinity and specificity, was produced as a treatment medication for METH abuse. In these studies, we present the preclinical characterization that provided predictive evidence that ch-mAb7F9 may be safe and effective in humans. In vitro ligand binding studies showed that ch-mAb7F9 is specific for and only binds its target ligands (METH, (+)-amphetamine, and 3,4-methylenedioxy-N-methylamphetamine) with high affinity. It did not bind endogenous neurotransmitters or other medications and was not bound by protein C1q, thus it is unlikely to stimulate in vivo complement-dependent cytotoxicity. Isothermal titration calorimetry potency studies showed that METH binding by ch-mAb7F9 is efficient. Pharmacokinetic studies of METH given after ch-mAb7F9 doses in rats demonstrated the in vivo application of these in vitro METH-binding characteristics. While METH had little effect on ch-mAb7F9 disposition, ch-mAb7F9 substantially altered METH disposition, dramatically reducing the volume of distribution and clearance of METH. The elimination half-life of METH was increased by ch-mAb7F9, but it was still very fast compared with the elimination of ch-mAb7F9. Importantly, the rapid elimination of unbound METH combined with previous knowledge of mAb:target ligand binding dynamics suggested that ch-mAb7F9 binding capacity regenerates over time. This finding has substantial therapeutic implications regarding the METH doses against which ch-mAb7F9 will be effective, on the duration of ch-mAb7F9 effects, and on the safety of ch-mAb7F9 in METH users who use METH while taking ch-mAb7F9. These results helped to support initiation of a Phase 1a study of ch-mAb7F9.  相似文献   

3.
《MABS-AUSTIN》2013,5(2):547-555
Ch-mAb7F9, a human-mouse chimeric monoclonal antibody (mAb) designed to bind (+)-methamphetamine (METH) with high affinity and specificity, was produced as a treatment medication for METH abuse. In these studies, we present the preclinical characterization that provided predictive evidence that ch-mAb7F9 may be safe and effective in humans. In vitro ligand binding studies showed that ch-mAb7F9 is specific for and only binds its target ligands (METH, (+)-amphetamine, and 3,4-methylenedioxy-N-methylamphetamine) with high affinity. It did not bind endogenous neurotransmitters or other medications and was not bound by protein C1q, thus it is unlikely to stimulate in vivo complement-dependent cytotoxicity. Isothermal titration calorimetry potency studies showed that METH binding by ch-mAb7F9 is efficient. Pharmacokinetic studies of METH given after ch-mAb7F9 doses in rats demonstrated the in vivo application of these in vitro METH-binding characteristics. While METH had little effect on ch-mAb7F9 disposition, ch-mAb7F9 substantially altered METH disposition, dramatically reducing the volume of distribution and clearance of METH. The elimination half-life of METH was increased by ch-mAb7F9, but it was still very fast compared with the elimination of ch-mAb7F9. Importantly, the rapid elimination of unbound METH combined with previous knowledge of mAb:target ligand binding dynamics suggested that ch-mAb7F9 binding capacity regenerates over time. This finding has substantial therapeutic implications regarding the METH doses against which ch-mAb7F9 will be effective, on the duration of ch-mAb7F9 effects, and on the safety of ch-mAb7F9 in METH users who use METH while taking ch-mAb7F9. These results helped to support initiation of a Phase 1a study of ch-mAb7F9.  相似文献   

4.
The present study examined the time-course and regionally-selective changes in the levels of the neurofilament protein NF68 in the mouse brain induced by methamphetamine (METH). The ability of low ambient temperature, or of the specific neuronal nitric oxide synthase (nNOS) inhibitor AR-R17477AR, to protect against both long-term striatal NF68 and dopamine loss induced by METH (3 mg/kg, i.p.) was also studied. Seven days after METH administration (3, 6 and 9 mg/kg, i.p., three times at 3 h intervals), mice showed a reduction of about 40% in immunoreactivity for NF68 in the striatum. This effect was not produced in cortex after METH administration at the dose of 3 mg/kg. No difference from controls was observed when measurements were carried out 1 h and 24 h after the last METH injection at the dose of 3 mg/kg. The loss of NF68 immunoreactivity seems to be associated with the long-term dopamine depletion induced by METH, since no change in serotonin concentration is observed in either the striatum or cortex 7 days after dosing. Animals kept at a room temperature of 4 degrees C showed a loss of NF68 similar to those treated at 22 degrees C but an attenuation of dopamine depletion in the striatum. Pre-treatment with AR-R17477AR (5 mg/kg, s.c.) 30 min before each of the three METH (3 mg/kg, i.p.) injections provided complete protection against METH-induced loss of NF68 immunoreactivity and attenuated the decrease in striatal dopamine and HVA concentrations by about 50%. These data indicate that both the reduction of NF68 immunoreactivity and the loss of dopamine concentration are due to an oxidative stress process mediated by reactive nitrogen species, and are not due to changes in body temperature.  相似文献   

5.
Recent studies in our laboratory have shown that methamphetamine (METH)-induced hyperlocomotion and behavioral sensitization in mice were inhibited by clorgyline, an irreversible monoamine oxidase inhibitor. In this study, the effect of clorgyline pretreatment on METH-induced rewarding effect was assessed by a conditioned place preference (CPP) test, using an apparatus developed with Supermex sensors (infrared pyroelectric sensors). Although intact male ICR mice showed significant CPP for METH (0.5 mg/kg, i.p.), pretreatment with subchronic clorgyline (0.1 and 10 mg/kg, s.c.) did not affect the magnitude of CPP. At a dose of 1 mg/kg, pretreatment of the mice with clorgyline showed a similar CPP index in both saline/saline and METH/saline pairing groups. During the conditioning session, the mice did not express behavioral sensitization to METH. Pretreatment with clorgyline (0.1, 1, and 10 mg/kg) decreased striatal apparent monoamine turnover in a dose-dependent manner. These results indicated that clorgyline pretreatment (0.1 and 10 mg/kg) did not influence the METH-induced rewarding effect in mice, although pretreatment of the mice with clorgyline at a dose of 1 mg/kg appeared to influence the CPP for METH.  相似文献   

6.
We previously reported the stimulatory effect of endogenous nitric oxide (NO) on gastric acid secretion in the isolated mouse whole stomach and histamine release from gastric histamine-containing cells. In the present study, we investigated the effects of endogenous and exogenous NO on gastric acid secretion in urethane-anesthetized rats. Acid secretion was studied in gastric-cannulated rats stimulated with several secretagogues under urethane anesthesia. The acid secretory response to the muscarinic receptor agonist bethanechol (2 mg/kg, s.c.), the cholecystokinin(2) receptor agonist pentagastrin (20 microg/kg, s.c.) or the centrally acting secretagogue 2-deoxy-D-glucose (200 mg/kg, i.v.) was dose-dependently inhibited by the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA, 10 or 50 mg/kg, i.v.). This inhibitory effect of L-NNA was reversed by a substrate of NO synthase, L-arginine (200 mg/kg, i.v.), but not by D-arginine. The histamine H(2) receptor antagonist famotidine (1 mg/kg, i.v.) completely inhibited the acid secretory response to bethanechol, pentagastrin or 2-deoxy-D-glucose, showing that all of these secretagogues induced gastric acid secretion mainly through histamine release from gastric enterochromaffin-like cells (ECL cells). On the other hand, histamine (10 mg/kg, s.c.)-induced gastric acid secretion was not inhibited by pretreatment with L-NNA. The NO donor sodium nitroprusside (0.3-3 mg/kg, i.v.) also dose-dependently induced an increase in acid secretion. The sodium nitroprusside-induced gastric acid secretion was significantly inhibited by famotidine or by the soluble guanylate cyclase inhibitor methylene blue (50 mg/kg, i.v.). These results suggest that NO is involved in the gastric acid secretion mediated by histamine release from gastric ECL cells.  相似文献   

7.
A relationship between formation of reactive oxygen species (ROS) and energy depletion has been proposed to play an important role in mediating methamphetamine (METH)-induced neurotoxicity. To evaluate this relationship, we examined the effect of the spin-trap agent, alpha-phenyl-N-tert-butyl nitrone (PBN) on hyperthermia and self-injurious behavior (SIB) and striatal dopamine (DA) depletion produced by METH (4 injections of 4 mg/kg, 2 hr intervals, s.c.) in BALB/c mice. Repeated administration of METH induced hyperthermia, incidence of SIB and striatal DA depletion (84% after 3 days). Pretreatment with PBN (4 injections of 60 or 120 mg/kg, i.p.) reduced METH-induced hyperthermia, but did not significantly attenuate METH-induced SIB or the striatal DA depletion. On the other hand, pretreatment with high doses of PBN (4 injections of 180 or 240 mg/kg, i.p.) protected against METH-induced hyperthermia and SIB, and PBN (180 mg/kg) also completely protected against the acute striatal DA depletion 60 min after the last injection of the drug. However, the long-lasting striatal DA depletion was only attenuated by 52 or 56%, respectively. These results indicate that METH-induced hyperthermia contributes to, but is not solely responsible for METH-induced neurotoxicity, and supports a role for formation of ROS and other mechanisms in the generation of METH-induced striatal dopaminergic neurotoxicity. In addition, the difference in the efficacy of PBN to protect against the acute or long-lasting striatal DA depletion induced by METH may indicate that both ROS formation and other mechanisms are required for METH-induced neurotoxicity to develop.  相似文献   

8.
Y Asano  F Ariyuki 《Jikken dobutsu》1987,36(4):435-442
To investigate the usefulness of spontaneous motor activity (SMA) measurement using the vibrator response method, the acute effects of drugs on SMA were observed in Sprague-Dawley male rats. There were no significant differences between four devices. Methamphetamine (0.3-1 mg/kg, i.p.) and 1-2 mg/kg (s.c.) of apomorphine increased the SMA, but 0.05-0.2 mg/kg (s.c.) of apomorphine decreased the SMA. Apomorphine at 1-2 mg/kg (s.c.) significantly increased the SMA when the vibrator response method was used as compared with the Animex method. These results suggest that the vibrator response apparatus is useful for the measurement of SMA in rats.  相似文献   

9.
Shimazu S  Tamashiro A  Yoneda F  Knoll J 《Life sciences》2003,72(12):1413-1419
R-(-)-1-(Benzofuran-2-yl)-2-propylaminopentane hydrochloride [(-)-BPAP], a highly potent enhancer of impulse propagation-mediated release of catecholamines and serotonin in the brain, and significantly increased the locomotor activity of normal rats at the doses of 0.3 and 1 mg/kg s.c. (P < 0.05), while L-DOPA (200 and 400 mg/kg i.p.) had no significant effect. The locomotor activity of rats simultaneously administered L-DOPA and (-)-BPAP was significantly higher than with (-)-BPAP alone (P < 0.05). In rats pretreated with reserpine (1 mg/kg i.v.), the hypolocomotion was significantly reversed by 400 mg/kg i.p. L-DOPA, or 1 or 3 mg/kg s.c. (-)-BPAP (P < 0.05). Furthermore, the combined administration of subthreshold doses of 200 mg/kg i.p. L-DOPA and 0.3 mg/kg s.c. (-)-BPAP highly potentiated the locomotor activity in the reserpine-pretreated rats. However, (-)-BPAP failed to reverse the hypolocomotion in rats pretreated with reserpine + alpha-methyl-DL-p-tyrosine. Thus, (-)-BPAP was demonstrated to possess the L-DOPA-sparing effect in normal and reserpine-pretreated rats.  相似文献   

10.
《Life sciences》1995,57(21):PL347-PL350
R(+)7-hydroxy-N,N-di-n-propyl-2-aminotetralin (R(+)-7-OH-DPAT), a selective dopamine D3 receptor agonist, (0.03–0.3 mg/Kg, S.c.) dose-relatedly caused emesis, whereas S (−)-7-OH-DPAT at even 1 mg/kg did not induce emesis in dogs. Apomorphine (0.03-0.3 mg/kg, s.c.) or quinpirole (0.03–0.1 mg/Kg, S.c.) also caused emesis in a dose-dependent manner. The potency of R(+)-7-OH-DPAT in inducing emesis was the same as that of apomorpine and quipirole. On the other hand, SKF-38393 (1 and 3 mg/Kg, S.c.), a selective d1 receptor agonist, failed to induce emesis in dogs. The emesis induced by R(+)-7-OH-DPAT (0.3 mg/Kg, S.c.) was inhibited by S(−)-eticlopride (0.01–0.1 mg/Kg, S.c.), a potent D2 and D3 receptor antagonist but not by SCH-23390 (1 mg/Kg, S.c.), a selective d1 receptor antagonist or clozapine (1 mg/Kg, S.c.), a D4 receptor antagonist. These results indicate that dopamine D3 receptors play an important role in the genesis of emesis in dogs.  相似文献   

11.
An increase in central postsynaptic 5-hydroxytryptamine (5-HT) function activates expression of activity-related cytoskeletal protein (Arc). Here, Arc expression was used to test whether, in rats, co-administration of a 5-HT re-uptake inhibitor (paroxetine) and a 5-HT1A receptor antagonist (WAY 100635) increases postsynaptic 5-HT function. After pre-treatment with WAY 100635 (0.3 mg/kg s.c.), paroxetine (5 mg/kg s.c.) caused a threefold increase in 5-HT in prefrontal cortex microdialysates. In situ hybridization studies found that neither paroxetine (5 mg/kg s.c.) nor WAY 1000635 (0.3 mg/kg s.c.) altered Arc mRNA abundance in any region examined. In contrast, paroxetine (5 mg/kg s.c.) increased Arc mRNA after pre-treatment with WAY 100635 (0.3 mg/kg s.c.). This increase was apparent in cortical regions (frontal, parietal and cingulate) and caudate nucleus but was absent in hippocampus (CA1). Increases in Arc mRNA were accompanied by an increase in c-fos mRNA. The increase in Arc expression induced by paroxetine/WAY 100635 was abolished by the 5-HT synthesis inhibitor, p-chlorophenylalanine (300 mg/kg i.p., daily for two days). In conclusion, paroxetine and WAY 100635 injected in combination (but not alone) caused a region-specific, 5-HT-mediated increase in Arc expression. These data provide molecular evidence that co-administration of a 5-HT re-uptake inhibitor and 5-HT1A receptor antagonist increases 5-HT function at the postsynaptic level.  相似文献   

12.
Abstract: The role of nitric oxide (NO) in the neurotoxic effects of methamphetamine (METH) was evaluated using 7-nitroindazole (7-NI), a potent inhibitor of neuronal nitric oxide synthase. Treatment of mice with 7-NI (50 mg/kg) almost completely counteracted the loss of dopamine, 3,4-dihydroxyphenylacetic acid, and tyrosine hydroxylase immunoreactivity observed 5 days after four injections of 10 or 7.5 mg/kg METH. With the higher dose of METH, this protection at 5 days occurred despite the fact that combined administration of METH and 7-NI significantly increased lethality and exacerbated METH-induced dopamine release (as indicated by a greater dopamine depletion at 90 min and 1 day). Combined treatment with 4 × 10 mg/kg METH and 7-NI also slightly increased the body temperature of mice as compared with METH alone. Thus, the neuroprotective effects of 7-NI are independent from lethality, are not likely to be related to a reduction of METH-induced dopamine release, and are not due to a decrease in body temperature. These results indicate that NO formation is an important step leading to METH neurotoxicity, and suggest that the cytotoxic properties of NO may be directly involved in dopaminergic terminal damage.  相似文献   

13.
Carbaryl (200 mg/kg or 400 mg/kg, p.o.) significantly elevated serotonin (5-HT) (57–109%) and 5-hydroxy-indoleacetic acid (5-HIAA) (60–78%) levels at 1.0 h in the hypothalamic region of adult male rat brain. Further, administration of carbaryl (200 mg/kg, p.o.) for different time intervals (0.5 h, 1.0 h, and 2.0 h) revealed that both 5-HT and 5-HIAA levels elevated maximally at 0.5 h in hypothalamus. These regional 5-HT and 5-HIAA levels were not significantly affected with pentylenetetrazol (PTZ) at any time after its treatment. But simultaneous administration of carbaryl (200 mg/kg, p.o.) and PTZ (60 mg/kg, s.c.) reduced the carbaryl-induced elevation of both 5-HT and 5-HIAA leveis. Measurement of (i) probenecid-induced (200 mg/kg, i.p.) accumulation and (ii) pargyline-induced (75 mg/kg, i.p.) depletion of hypothalamic 5-HIAA level in the absence or presence of carbaryl (200 mg/kg, p.o.) and/or PTZ (60 mg/kg, s.c.) revealed that (a) carbaryl enhanced the synthesis as well as the breakdown of 5-HT, (b) PTZ had no effect on either of these processes of 5-HT, and (c) carbaryl-induced increased catabolism of 5-HT became normal in the presence of PTZ.  相似文献   

14.
Vesicular monoamine transporter‐2 (VMAT2) inhibitors reduce methamphetamine (METH) reward in rats. The current study determined the effects of VMAT2 inhibitors lobeline (LOB; 1 or 3 mg/kg) and N‐(1,2R‐dihydroxylpropyl)‐2,6‐cis‐di(4‐methoxyphenethyl)piperidine hydrochloride (GZ‐793A; 15 or 30 mg/kg) on METH‐induced (0.5 mg/kg, SC) changes in extracellular dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) in the reward‐relevant nucleus accumbens (NAc) shell using in vivo microdialysis. The effect of GZ‐793A (15 mg/kg) on DA synthesis in tissue also was investigated in NAc, striatum, medial prefrontal cortex and orbitofrontal cortex. In NAc shell, METH produced a time‐dependent increase in extracellular DA and decrease in DOPAC. Neither LOB nor GZ‐793A alone altered extracellular DA; however, both drugs increased extracellular DOPAC. In combination with METH, LOB did not alter the effects of METH on DA; however, GZ‐793A, which has greater selectivity than LOB for inhibiting VMAT2, reduced the duration of the METH‐induced increase in extracellular DA. Both LOB and GZ‐793A enhanced the duration of the METH‐induced decrease in extracellular DOPAC. METH also increased tissue DA synthesis in NAc and striatum, whereas GZ‐793A decreased synthesis; no effect of METH or GZ‐793A on DA synthesis was found in medial prefrontal cortex or orbitofrontal cortex. These results suggest that selective inhibition of VMAT2 produces a time‐dependent decrease in DA release in NAc shell as a result of alterations in tyrosine hydroxylase activity, which may play a role in the ability of GZ‐793A to decrease METH reward.

  相似文献   


15.
Women initiate cocaine use at a younger age and have more complications (e.g., higher rates of major or minor depression) related to cocaine use than men. It has been proposed that estrogens play an important role in these sex differences. The addictive potential of psychoactive drugs can be measured in rats via a rewarding intracranial self-stimulation (ICSS) procedure. The rate-independent method of ICSS allows researchers to assess the “pure” rewarding effect of cocaine without influence of nonspecific motor reactions. The present study aimed to estimate effects of estradiol and a combination of estradiol and cocaine on ICSS in ovariectomized female rats. 17-β-estradiol (5 μg/animal/day, 2 days) produced a long-lasting gradual lowering of the thresholds for ICSS. The ability of estradiol to decrease thresholds for ICSS has never been shown previously. Combination of 17-β-estradiol and cocaine (5.0 mg/kg, 5 days) produced a greater effect on ICSS thresholds than the effect of either compound alone. No tolerance or sensitization to cocaine developed during the study. Present findings suggest estradiol increases sensitivity of the brain reward system in rats, which may have an important implication in understanding sex differences in cocaine effects.  相似文献   

16.
To clarify the regulation of central histaminergic (HAergic) activity by cholinergic receptors, the effects of drugs that stimulate the cholinergic system on brain histamine (HA) turnover were examined, in vivo, in mice and rats. The HA turnover was estimated from the accumulation of tele-methylhistamine (t-MH) during the 90-min period after administration of pargyline (65 mg/kg, i.p.). In the whole brain of mice, oxotremorine, at doses higher than 0.05 mg/kg, s.c., significantly inhibited the HA turnover, this effect being completely antagonized by atropine but not by methylatropine. A large dose of nicotine (10 mg/kg, s.c.) also significantly inhibited the HA turnover. This inhibitory effect was antagonized by mecamylamine but not by atropine or hexamethonium. A cholinesterase inhibitor, physostigmine, at doses higher than 0.1 mg/kg, s.c., significantly inhibited the HA turnover. This effect was antagonized by atropine but not at all by mecamylamine. None of these cholinergic antagonists used affected the steady-state t-MH level or HA turnover by themselves. In the rat brain, physostigmine (0.1 and 0.3 mg/kg, s.c.) also decreased the HA turnover. This inhibitory effect of physostigmine was especially marked in the striatum and cerebral cortex where muscarinic receptors are present in high density. Oxotremorine (0.2 mg/kg, s.c.) and nicotine (1 mg/kg, s.c.) also decreased the HA turnover in the rat brain. However, these effects showed no marked regional differences. These results suggest that the stimulation of central muscarinic receptors potently inhibits the HAergic activity in the brain and that strong stimulation of central nicotinic receptors can also induce a similar effect.  相似文献   

17.
Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4×10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (−19% and −28% for 1 mg/kg pre- and post-treated animals; −25% and −21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (−50%) and by pre-treatment with 3 mg/kg Δ9-THC (−53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (−34% and −47% for 1 mg/kg pre- and post-treated animals; −37% and −29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our results indicate that Δ9-THC reduces METH-induced brain damage via inhibition of nNOS expression and astrocyte activation through CB1-dependent and independent mechanisms, respectively.  相似文献   

18.
Antinociceptive activity of a novel buprenorphine analogue   总被引:2,自引:0,他引:2  
HS-599 is a didehydroderivative of buprenorphine that displays high affinity and good selectivity for mu-opioid receptors. We studied its antinociceptive properties after s.c. injection in mice with the tail-flick and hot-plate tests. In the tail-flick test HS-599 (AD50 = 0.2801 micromol/kg s.c.) behaved as a full agonist and was twice as potent as buprenorphine (AD50=0.4569 micromol/kg s.c.) and 50 times more potent than morphine (AD50 = 13.3012 micromol/kg s.c.). Whereas the mu-opioid receptor antagonists naloxone (1-10 mg/kg s.c.) and naltrexone (5-15 mg/kg s.c.) antagonized HS-599 induced analgesia, the delta-opioid receptor antagonist naltrindole (20 mg/kg s.c.) and the kappa-opioid receptor antagonist nor-binaltorphimine (20 mg/kg s.c.) did not. With the hot-plate test at 50 degrees C, HS-599 (AD50 = 0.0359 micromol/kg s.c.) was a full agonist about 130 times more potent than morphine (AD50 = 4.8553 micromol/kg s.c.). With a high intensity nociceptive stimulus (55 degrees C) HS-599 (AD50 = 1.0382 micromol/kg s.c.) remained 7 times more potent than morphine (AD50 = 7.0210 micromol/kg s.c.) but never exceeded the 55% of the maximum possible effect, behaving as a partial agonist able to antagonize morphine antinociception in a dose-dependent manner. HS-599 promises to be a potent and safe new analgesic, preferentially acting at spinal level.  相似文献   

19.
A 7-day treatment with 20 mg/kg/day desipramine reduced the immobility time in the behavioral "despair" test in rats. The effect of DMI was antagonized by sulpiride (100 mg/kg i.p.), metoclopramide (20 mg/kg i.p.) and clopazine (20 mg/kg i.p.) but not by haloperidol (0.5 mg/kg i.p.) or chlorpromazine (5 mg/kg i.p.). Alpha-adrenoreceptor blockers (prazosin 3 mg/kg s.c.; aceperone 10 mg/kg i.p.; azapetine 24 mg/kg s.c.; phentolamine 20 mg/kg i.p.), dl-propranolol (5 mg/kg i.p.) and clonidine (0.1 mg/kg i.p.) failed to modify the anti-immobility effect of DMI. The data suggest that a particular subtype of dopamine receptors is involved in the anti-immobility effect of a 7-day treatment with DMI in the behavioral "despair" test in rats.  相似文献   

20.
The neurotoxic actions of methamphetamine (METH) may be mediated in part by reactive oxygen species (ROS). Methamphetamine administration leads to increases in ROS formation and lipid peroxidation in rodent brain; however, the extent to which proteins may be modified or whether affected brain regions exhibit similar elevations of lipid and protein oxidative markers have not been investigated. In this study we measured concentrations of TBARs, protein carbonyls and monoamines in various mouse brain regions at 4 h and 24 h after the last of four injections of METH (10 mg/kg/injection q 2 h). Substantial increases in TBARs and protein carbonyls were observed in the striatum and hippocampus but not the frontal cortex nor the cerebellum of METH-treated mice. Furthermore, lipid and protein oxidative markers were highly correlated within each brain region. In the hippocampus and striatum elevations in oxidative markers were significantly greater at 24 h than at 4 h. Monoamine levels were maximally reduced within 4 h (striatal dopamine [DA] by 95% and serotonin [5-HT] in striatum, cortex and hippocampus by 60-90%). These decrements persisted for 7 days after METH, indicating effects reflective of nerve terminal damage. Interestingly, NE was only transiently depleted in the brain regions investigated (hippocampus and cortex), suggesting a pharmacological and non-toxic action of METH on the noradrenergic nerve terminals. This study provides the first evidence for concurrent formation of lipid and protein markers of oxidative stress in several brain regions of mice that are severely affected by large neurotoxic doses of METH. Moreover, the differential time course for monoamine depletion and the elevations in oxidative markers indicate that the source of oxidative stress is not derived directly from DA or 5HT oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号