首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae.  相似文献   

2.
Streptococcus agalactiae (Group B streptococcus, GBS) is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC) is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta –hemolytic streptococci.  相似文献   

3.
The operon of the anabolic pyruvate oxidoreductase (POR) of Methanococcus maripaludis encodes two genes (porEF) whose functions are unknown. Because these genes possess sequence similarity to polyferredoxins, they may be electron carriers to the POR. To elucidate whether the methanococcal POR requires PorEF for activity, a deletion mutant, strain JJ150, lacking porEF was constructed. Compared to the wild-type strain JJ1, the mutant grew more slowly in minimal medium and minimal plus acetate medium, and pyruvate-dependent methanogenesis was inhibited. In contrast, the methyl-viologen-dependent pyruvate-oxidation activity of POR, carbon monoxide dehydrogenase, and hydrogenase activities of the mutant were similar to those of the wild-type. Upon genetic complementation of the mutant with porEF in the methanococcal shuttle vector pMEV2+porEF, growth in minimal medium and pyruvate-dependent methanogenesis were restored to wild-type levels. Complementation with porE alone restored methanogenesis from pyruvate but not growth in minimal medium. Complementation with porF alone partially restored growth but not methanogenesis from pyruvate. Although the specific roles of porE and porF have not been determined, these results suggest that PorEF play important roles in the anabolic POR in vivo even though they are not required for the dye-dependent activity.Abbreviations CODH/ACS Carbon monoxide dehydrogenase/acetyl-CoA synthase - POR Pyruvate oxidoreductase  相似文献   

4.
Conversion of lignocellulosic feedstocks to ethanol requires microorganisms that effectively ferment both hexose and pentose sugars. Towards this goal, recombinant organisms have been developed in which heterologous genes were added to platform organisms such as Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli. Using a novel approach that relies only on native enzymes, we have developed a homoethanologenic alternative, Escherichia coli strain SE2378. This mutant ferments glucose or xylose to ethanol with a yield of 82% under anaerobic conditions. An essential mutation in this mutant was mapped within the pdh operon (pdhR aceEF lpd), which encodes components of the pyruvate dehydrogenase complex. Anaerobic ethanol production by this mutant is apparently the result of a novel pathway that combines the activities of pyruvate dehydrogenase (typically active during aerobic, oxidative metabolism) with the fermentative alcohol dehydrogenase.  相似文献   

5.
The pyruvate dehydrogenase (PDH) complex of the gram-negative bacterium Zymomonas mobilis was purified to homogeneity. From 250 g of cells, we isolated 1 mg of PDH complex with a specific activity of 12.6 U/mg of protein. Analysis of subunit composition revealed a PDH (E1) consisting of the two subunits E1α (38 kDa) and E1β (56 kDa), a dihydrolipoamide acetyltransferase (E2) of 48 kDa, and a lipoamide dehydrogenase (E3) of 50 kDa. The E2 core of the complex is arranged to form a pentagonal dodecahedron, as shown by electron microscopic images, resembling the quaternary structures of PDH complexes from gram-positive bacteria and eukaryotes. The PDH complex-encoding genes were identified by hybridization experiments and sequence analysis in two separate gene regions in the genome of Z. mobilis. The genes pdhAα (1,065 bp) and pdhAβ (1,389 bp), encoding the E1α and E1β subunits of the E1 component, were located downstream of the gene encoding enolase. The pdhB (1,323 bp) and lpd (1,401 bp) genes, encoding the E2 and E3 components, were identified in an unrelated gene region together with a 450-bp open reading frame (ORF) of unknown function in the order pdhB-ORF2-lpd. Highest similarities of the gene products of the pdhAα, pdhAβ, and pdhB genes were found with the corresponding enzymes of Saccharomyces cerevisiae and other eukaryotes. Like the dihydrolipoamide acetyltransferases of S. cerevisiae and numerous other organisms, the product of the pdhB gene contains a single lipoyl domain. The E1β subunit PDH was found to contain an amino-terminal lipoyl domain, a property which is unique among PDHs.  相似文献   

6.
Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs) in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402) correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells.  相似文献   

7.
The acetolactate synthase (als)-deficient mutant of Klebsiella pneumoniae fails to produce 1,3-propanediol (1,3-PD) or 2,3-butanediol (2,3-BD), and is defective in glycerol metabolism. In an effort to recover production of the industrially valuable 1,3-PD, we introduced the Zymomonas mobilis pyruvate decarboxylase (pdc) and aldehyde dehydrogenase (aldB) genes into the als-deficient mutant to activate the conversion of pyruvate to ethanol. Heterologous expression of pdc and aldB efficiently recovered glycerol metabolism in the 2,3-BD synthesis-defective mutant, enhancing the production of 1,3-PD by preventing the accumulation of pyruvate. Production of 1,3-PD in the pdc- and aldB-expressing als-deficient mutant was further enhanced by increasing the aeration rate. This system uses metabolic engineering to produce 1,3-PD while minimizing the generation of 2,3-BD, offering a breakthrough for the industrial production of 1,3-PD from crude glycerol.  相似文献   

8.
Mutants with low pyruvate dehydrogenase (PD) activities were derived from a pyruvate kinase-deficient lysine-producing mutant of Brevibacterium flavum, No. 22. They were selected as prototrophic revertants of the acetate auxotrophs of strain No. 22. Among them strain KD-11 produced 55g/liter of lysine as its HCI salt when cultured for 72 hr in a medium containing lOOg/liter of glucose, soybean-meal hydrolysate and methionine. The lysine yield of strain KD-11 was the highest ever reported (55%). The mutant required a higher concentration of methionine for maximum production and gave a smaller amount of cell mass in cultivation than its parent. PD activity of strain No. 22 was stimulated by cysteine, stabilized by glycerol, and gave apparent Kms of 89, 22, 380, 83 μM for pyruvate, coenzyme A, 3-acetylpyridine adenine dinucleotide, and NAD, respectively, under standard conditions. The apparent Km for NAD of PD from strain KD-11 was 10-times higher than that from No. 22. When the concentration of NAD was low, the cell extracts of strain KD-11 showed low PD activity. The specific activity of phosphoenolpyruvate carboxylase of strain KD-11 was slightly higher than that of strain No. 22, while the inhibition by aspartate of the former enzyme was weaker than that of the latter.  相似文献   

9.
S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.  相似文献   

10.
This work was undertaken to clarify the role of acetaldehyde dehydrogenases in Saccharomyces cerevisiae metabolism during growth on respiratory substrates. Until now, there has been little agreement concerning the ability of mutants deleted in gene ALD4, encoding mitochondrial acetaldehyde dehydrogenase, to grow on ethanol. Therefore we constructed mutants in two parental strains (YPH499 and W303-1a). Some differences appeared in the growth characteristics of mutants obtained from these two parental strains. For these experiments we used ethanol, pyruvate or lactate as substrates. Mitochondria can oxidize lactate into pyruvate using an ATP synthesis-coupled pathway. The ald4Delta mutant derived from the YPH499 strain failed to grow on ethanol, but growth was possible for the ald4Delta mutant derived from the W303-1a strain. The co-disruption of ALD4 and PDA1 (encoding subunit E1alpha of pyruvate dehydrogenase) prevented the growth on pyruvate for both strains but prevented growth on lactate only in the double mutant derived from the YPH499 strain, indicating that the mutation effects are strain-dependent. To understand these differences, we measured the enzyme content of these different strains. We found the following: (a) the activity of cytosolic acetaldehyde dehydrogenase in YPH499 was relatively low compared to the W303-1a strain; (b) it was possible to restore the growth of the mutant derived from YPH499 either by addition of acetate in the media or by introduction into this mutant of a multicopy plasmid carrying the ALD6 gene encoding cytosolic acetaldehyde dehydrogenase. Therefore, the lack of growth of the mutant derived from the YPH499 strain seemed to be related to the low activity of acetaldehyde oxidation. Therefore, when cultured on ethanol, the cytosolic acetaldehyde dehydrogenase can partially compensate for the lack of mitochondrial acetaldehyde dehydrogenase only when the activity of the cytosolic enzyme is sufficient. However, when cultured on pyruvate and in the absence of pyruvate dehydrogenase, the cytosolic acetaldehyde dehydrogenase cannot compensate for the lack of the mitochondrial enzyme because the mitochondrial form produces intramitochondrial NADH and consequently ATP through oxidative phosphorylation.  相似文献   

11.
This report highlights the whole-genome shotgun draft sequence for a Streptococcus agalactiae strain representing multilocus sequence type (ST) 17, isolated from a colonized woman at 8 weeks postpartum. This sequence represents an important addition to the published genomes and will promote comparative genomic studies of S. agalactiae recovered from diverse sources.  相似文献   

12.
Mechanisms underlying pathogenic processes in mycoplasma infections are poorly understood, mainly because of limited sequence similarities with classical, bacterial virulence factors. Recently, large-scale transposon mutagenesis in the ruminant pathogen Mycoplasma agalactiae identified the NIF locus, including nifS and nifU, as essential for mycoplasma growth in cell culture, while dispensable in axenic media. To evaluate the importance of this locus in vivo, the infectivity of two knock-out mutants was tested upon experimental infection in the natural host. In this model, the parental PG2 strain was able to establish a systemic infection in lactating ewes, colonizing various body sites such as lymph nodes and the mammary gland, even when inoculated at low doses. In these PG2-infected ewes, we observed over the course of infection (i) the development of a specific antibody response and (ii) dynamic changes in expression of M. agalactiae surface variable proteins (Vpma), with multiple Vpma profiles co-existing in the same animal. In contrast and despite a sensitive model, none of the knock-out mutants were able to survive and colonize the host. The extreme avirulent phenotype of the two mutants was further supported by the absence of an IgG response in inoculated animals. The exact role of the NIF locus remains to be elucidated but these data demonstrate that it plays a key role in the infectious process of M. agalactiae and most likely of other pathogenic mycoplasma species as many carry closely related homologs.  相似文献   

13.
We report pyruvate formation in Escherichia coli strain ALS929 containing mutations in the aceEF, pfl, poxB, pps, and ldhA genes which encode, respectively, the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, phosphoenolpyruvate synthase, and lactate dehydrogenase. The glycolytic rate and pyruvate productivity were compared using glucose-, acetate-, nitrogen-, or phosphorus-limited chemostats at a growth rate of 0.15 h−1. Of these four nutrient limitation conditions, growth under acetate limitation resulted in the highest glycolytic flux (1.60 g/g · h), pyruvate formation rate (1.11 g/g · h), and pyruvate yield (0.70 g/g). Additional mutations in atpFH and arcA (strain ALS1059) further elevated the steady-state glycolytic flux to 2.38 g/g · h in an acetate-limited chemostat, with heterologous NADH oxidase expression causing only modest additional improvement. A fed-batch process with strain ALS1059 using defined medium with 5 mM betaine as osmoprotectant and an exponential feeding rate of 0.15 h−1 achieved 90 g/liter pyruvate, with an overall productivity of 2.1 g/liter · h and yield of 0.68 g/g.  相似文献   

14.
In addition to the previously characterized pyruvate oxidase PoxB, the Lactobacillus plantarum genome encodes four predicted pyruvate oxidases (PoxC, PoxD, PoxE, and PoxF). Each pyruvate oxidase gene was individually inactivated, and only the knockout of poxF resulted in a decrease in pyruvate oxidase activity under the tested conditions. We show here that L. plantarum has two major pyruvate oxidases: PoxB and PoxF. Both are involved in lactate-to-acetate conversion in the early stationary phase of aerobic growth and are regulated by carbon catabolite repression. A strain devoid of pyruvate oxidase activity was constructed by knocking out the poxB and poxF genes. In this mutant, acetate production was strongly affected, with lactate remaining the major end product of either glucose or maltose fermentation. Notably, survival during the stationary phase appeared to be dramatically improved in the poxB poxF double mutant.  相似文献   

15.
A pyruvate kinase-lacking mutant of Brevibacterium flavum produced 22.6 g/liter of l-aspartic acid with glutamic acid as a by-product, when cultured for 48 hr in a medium containing 100 g/liter of glucose. The production clearly depended on the amount of biotin added. This strain, 70, was derived by several steps of mutation from wild strain 2247 producing glutamate, successively via a citrate synthase-defective glutamate auxotroph, strain 214, a prototrophic revertant, strain 15-8, producing 10 g/liter of l-aspartic acid, and an S-(2-aminoethyl)-l-cysteine-resistant mutant, strain 1-231, having low pyruvate kinase and homoserine dehydrogenase and producing lysine. Strain 70, a methionine-insensitive revertant from strain 1-231, had a normal level of homoserine dehydrogenase but no pyruvate kinase. Its citrate synthase activity was about half that of the wild strain at saturated concentrations of the substrates with Michaelis constants for oxalacetate and acetyl-CoA of 110 and 6 times as high as those of the wild-type enzyme, respectively. The mutational step for these alterations in citrate synthase was strain 15-8. Phosphoenolpyruvate carboxylase of strain 70 showed 1.5-fold higher activity in the crude extract at saturated concentrations of phosphoenolpyruvate, a lower Michaelis constant (1.5mM).for the substrate, phosphoenolpyruvate, less sensitivity to the feedback inhibition by aspartate, and higher sensitivities to the activators, acetyl-CoA and fructose-1,6-bisphosphate, than those of the wild strain. The concentrations of aspartate giving 50% inhibition were 6.2- and 4.5-fold higher in the absence and presence of acetyl-CoA, respectively.  相似文献   

16.
Previously, using γ-irradiation treatment, we isolated a mutant strain of Klebsiella pneumoniae (named GEM167) that showed high-level ethanol production from glycerol. In the present study, in an effort to enhance ethanol production, we used a deletion of the lactate dehydrogenase gene to engineer a mutant strain incapable of lactate synthesis. In the ΔldhA mutant of GEM167, the production of ethanol was significantly increased from 21.5 g/l to 28.9 g/l and from 0.93 g/(l h) to 1.2 g/(l h). Introduction of the Zymomonas mobilis pdc and adhII genes encoding pyruvate decarboxylase and aldehyde dehydrogenase, respectively, further improved the ethanol production level from glycerol to 31.0 g/l; this is the highest level reported to date.  相似文献   

17.
Oh BR  Seo JW  Heo SY  Hong WK  Luo LH  Joe MH  Park DH  Kim CH 《Bioresource technology》2011,102(4):3918-3922
A mutant strain of Klebsiella pneumoniae, termed GEM167, was obtained by γ irradiation, in which glycerol metabolism was dramatically affected on exposure to γ rays. Levels of metabolites of the glycerol reductive pathway, 1,3-propanediol (1,3-PD) and 3-hydroxypropionic acid (3-HP), were decreased in the GEM167 strain compared to a control strain, whereas the levels of metabolites derived from the oxidative pathway, 2,3-butanediol (2,3-BD), ethanol, lactate, and succinate, were increased. Notably, ethanol production from glycerol was greatly enhanced upon fermentation by the mutant strain, to a maximum production level of 21.5 g/l, with a productivity of 0.93 g/l/h. Ethanol production level was further improved to 25.0 g/l upon overexpression of Zymomonas mobilispdc and adhII genes encoding pyruvate decarboxylase (Pdc) and aldehyde dehydrogenase (Adh), respectively in the mutant strain GEM167.  相似文献   

18.
Expression of a heterologous l-lactate dehydrogenase (l-ldh) gene enables production of optically pure l-lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine l-ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.  相似文献   

19.
The present study investigated the simultaneous oxidation of pyruvate and amino acids during H2-evolving growth of the hyperthermophilic archaeon Thermococcus kodakarensis. The comparison of mass balance between a cytosolic hydrogenase (HYH)-deficient strain (the ΔhyhBGSL strain) and the parent strain indicated that NADPH generated via H2 uptake by HYH was consumed by reductive amination of 2-oxoglutarate catalyzed by glutamate dehydrogenase. Further examinations were done to elucidate functions of three enzymes potentially involved in pyruvate oxidation: pyruvate formate-lyase (PFL), pyruvate:ferredoxin oxidoreductase (POR), and 2-oxoisovalerate:ferredoxin oxidoreductase (VOR) under the HYH-deficient background in T. kodakarensis. No significant change was observed by deletion of pflDA, suggesting that PFL had no critical role in pyruvate oxidation. The growth properties and mass balances of ΔporDAB and ΔvorDAB strains indicated that POR and VOR specifically functioned in oxidation of pyruvate and branched-chain amino acids, respectively, and the lack of POR or VOR was compensated for by promoting the oxidation of another substrate driven by the remaining oxidoreductase. The H2 yields from the consumed pyruvate and amino acids were increased from 31% by the parent strain to 67% and 82% by the deletion of hyhBGSL and double deletion of hyhBGSL and vorDAB, respectively. Significant discrepancies in the mass balances were observed in excess formation of acetate and NH3, suggesting the presence of unknown metabolisms in T. kodakarensis grown in the rich medium containing pyruvate.  相似文献   

20.
The metabolic consequences of two defects in pyruvate metabolism of the hyphal fungus Aspergillus nidulans have been investigated by natural abundance 13C-NMR spectroscopy. A pyruvate dehydrogenase complex (pdh) mutant, grown on acetate, accumulates alanine upon starvation which is derived from mannitol reserves. The -alanine level increases further upon incubation with the non-permissive substrate -glucose. -Glutamate is absent from these spectra as it is required both for the transamination of pyruvate and as a reaction on an impaired energy metabolism in such a pdh-deficient strain. A pyruvate carboxylase (pyc) mutant, grown upon acetate, only starts to accumulate alanine after a long incubation period with -glucose, due to the long-lasting presence of phosphoenolpyruvate carboxykinase and malic enzyme, which are both induced by growth on acetate. When this strain is grown on -fructose and -glutamate, alanine also accumulates within 3 h upon transfer to -glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号