首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
T antigen (Tag) from simian virus 40 binds specifically to two distinct sites in the viral origin of replication and to single-stranded DNA. Analysis of the protein domain responsible for these activities revealed the following. (i) The C-terminal boundary of the origin-specific and single-strand-specific DNA-binding domain is at or near amino acid 246; furthermore, the maximum of these DNA-binding activities coincides with a narrow C-terminal boundary, spanning 4 amino acids (246 to 249) and declines sharply in proteins with C termini which differ by a few (4 to 10) amino acids; (ii) a polypeptide spanning residues 132 to 246 of Tag is an independent domain responsible for origin-specific DNA binding and presumably for single-stranded DNA binding; and (iii) a comparison of identical N-terminal fragments of Tag purified from mammalian and bacterial cells revealed differential specificity and levels of activity between the two sources of protein. A role for posttranslational modification (phosphorylation) in controlling the DNA-binding activity of Tag is discussed.  相似文献   

2.
The specificity and regulation of protein-DNA interactions play a crucial role in all aspects of communication between genotype and phenotype in a cell. The large T antigen of simian virus 40 binds to identical, yet quite differently arranged, pentanucleotide motifs in the simian virus 40 control region, sites I and II. Wild-type T antigen preferentially binds site I. We demonstrate that a bacterial peptide encoding residues 1 to 259 (T260) includes the essential amino acids required for binding to both DNA sites but predominantly binds site II. However, a longer peptide (residues 1 to 369; T370) binds almost exclusively to site I. Thus, the addition of amino acids 260 to 369 to the T260 peptide results in the loss of site II binding. This region includes a single putative metal-binding region, and mutation of T370 at either conserved cysteine of the finger results in equal but inefficient binding to both sites. While no metal binding has been shown to be directly associated with this sequence, these results suggest a novel, perhaps structural, function for such a finger motif, since this domain of T antigen appears to play a crucial role in modulating the DNA-binding behavior of T-antigen peptides.  相似文献   

3.
M Strauss  P Argani  I J Mohr    Y Gluzman 《Journal of virology》1987,61(10):3326-3330
The origin-specific DNA-binding domain of simian virus 40 large T antigen was analyzed, and its C-terminal boundary was found to be at or before amino acid 259. This does not include the zinc finger structural motif located at amino acids 302 to 320 (J. M. Berg, Science 232:485-486, 1986). Interestingly, N-terminal fragments of 266 and 272 amino acids and larger displayed dramatically reduced origin-binding activity. In addition, the specific DNA-binding properties of truncated proteins purified from both bacterial and mammalian sources were compared. Truncated T antigens from mammalian cells bound specific DNA fragments more efficiently than did their bacterial counterparts. These results implicate posttranslational modification with a role in regulating the DNA-binding activity of large T antigen.  相似文献   

4.
S Chen  E Paucha 《Journal of virology》1990,64(7):3350-3357
A series of replication-competent simian virus 40 (SV40) large T antigens with point and deletion mutations in the amino acid sequence between residues 105 and 115 were examined for the ability to immortalize primary cultures of mouse and rat cells. The results show that certain mutants, including one that deletes the entire region, are able to immortalize. However, consistent with previous data, the immortalized cells are not fully transformed, as judged by doubling time, sensitivity to concentrations of serum, and anchorage-independent growth. The region from 106 to 114 has structural features in common with a region involved in transformation by adenovirus E1a protein (J. Figge, T. Webster, T.F. Smith, and E. Paucha, J. Virol. 62:1814-1818, 1988) and influences the binding of the retinoblastoma gene product to large T (J.A. DeCaprio, J.W. Ludlow, J. Figge, J.-Y. Shew, C.-M. Huang, W.-H. Lee, E. Marsilio, E. Paucha, and D.M. Livingston, Cell 54:275-283, 1988). Together, these results imply that the sequence from 106 to 114 forms part of a domain that is essential for transformation of established cells, is dispensable for immortalization, and is not required for SV40 replication. The results also indicate that the ability of SV40 large T to immortalize primary cells is independent of its ability to bind to the retinoblastoma gene product.  相似文献   

5.
The carboxyl-terminal portion of simian virus 40 large T antigen is essential for productive infection of CV-1 and CV-1p green monkey kidney cells. Mutant dlA2459, lacking 14 base pairs at 0.193 map units, was positive for viral DNA replication, but unable to form plaques in CV-1p cells (J. Tornow and C.N. Cole, J. Virol. 47:487-494, 1983). In this report, the defect of dlA2459 is further defined. Simian virus 40 late mRNAs were transcribed, polyadenylated, spliced, and transported in dlA2459-infected cells, but the level of capsid proteins produced in infected CV-1 green monkey kidney cells was extremely low. dlA2459 large T antigen lacks those residues known to be required for adenovirus helper function, and the block to productive infection by dlA2459 occurs at the same stage of infection as the block to productive adenovirus infection of CV-1 cells. These results suggest that the adenovirus helper function is required for productive infection by simian virus 40. Mutant dlA2459 was able to grow on the Vero and BSC-1 lines of African green monkey kidney cells. Additional mutants affecting the carboxyl-terminal portion of large T were prepared. Mutant inv2408 contains an inversion of the DNA between the BamHI and BclI sites (0.144 to 0.189 map units). This inversion causes transposition of the carboxyl-terminal 26 amino acids of large T antigen and the carboxyl-terminal 18 amino acids of VP1. This mutant was viable, even though the essential information absent from dlA2459 large T antigen has been transferred to the carboxyl terminus of VP1 of inv2408. The VP1 polypeptide carrying this carboxyl-terminal portion of large T could overcome the defect of dlA2459. This indicates that the carboxyl terminus of large T antigen is a separate and separable functional domain.  相似文献   

6.
An 8,000-molecular-weight (8K) T antigen was found in all cells transformed by simian virus 40. The 8K T antigen was weakly labeled in vivo with [35S]methionine or 32Pi. A deletion in the human papovavirus BK genome, in the region coding for the carboxy-terminal end of the large T antigen, reduced the size of the 8K T antigen. The last 80 amino acids of the large T antigen include the sequence Asp-Asp-Asp-Asp unique to the activation peptide of trypsinogen. Large T antigen bound diisopropyl fluorophosphate and was retained by D-phenylalanine coupled to Sepharose beads, an affinity adsorbent that can retain chymotrypsin. The large T antigen and the recA protein of Escherichia coli, a known protease, have several properties in common as well as several similar sequences. Antibodies against large T antigen interacted with native recA protein.  相似文献   

7.
Simian virus 40 large T antigen is a multifunctional protein that is encoded by the early region of the viral genome. We constructed fusion proteins between simian virus 40 large T antigen and beta-galactosidase by cloning HindIII fragments A and D of the virus into the HindIII sites of expression vectors pUR290, pUR291, and pUR292. Large amounts of the fusion protein were synthesized when the DNA fragment encoding part of simian virus 40 large T antigen was in frame with the lacZ gene of the expression vector. Using Western blotting and a competition radioimmunoassay, we assessed the binding of existing anti-T monoclonal and polyclonal antibodies to the two fusion proteins. Several monoclonal antibodies reacted with the protein encoded by the fragment A construction, but none reacted with the protein encoded by the fragment D construction. However, mice immunized with pure beta-galactosidase-HindIII fragment D fusion protein produced good levels of anti-T antibodies, which immunoprecipitated simian virus 40 large T antigen from lytically infected cells, enabling derivation of monoclonal antibodies to this region of large T antigen. Therefore, the fusion proteins allowed novel epitopes to be discovered on large T antigen and permitted the precise localization of epitopes recognized by existing antibodies. The same approach can also be used to produce antibodies against defined regions of any gene.  相似文献   

8.
Simian virus 40 large T antigen from lytically infected cells has been purified to near homogeneity by immunochromatography of the cell extract on a protein A-Sepharose-monoclonal antibody column. The resulting T antigen retains biochemical activity; i.e., it hydrolyzes ATP and binds to simian virus 40 DNA at the origin of replication.  相似文献   

9.
The large T antigen (T-ag) protein binds to and activates DNA replication from the origin of DNA replication (ori) in simian virus 40 (SV40). Here, we determined the crystal structures of the T-ag origin-binding domain (OBD) in apo form, and bound to either a 17 bp palindrome (sites 1 and 3) or a 23 bp ori DNA palindrome comprising all four GAGGC binding sites for OBD. The T-ag OBDs were shown to interact with the DNA through a loop comprising Ser147-Thr155 (A1 loop), a combination of a DNA-binding helix and loop (His203-Asn210), and Asn227. The A1 loop traveled back-and-forth along the major groove and accounted for most of the sequence-determining contacts with the DNA. Unexpectedly, in both T-ag-DNA structures, the T-ag OBDs bound DNA independently and did not make direct protein-protein contacts. The T-ag OBD was also captured bound to a non-consensus site ATGGC even in the presence of its canonical site GAGGC. Our observations taken together with the known biochemical and structural features of the T-ag-origin interaction suggest a model for origin unwinding.  相似文献   

10.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

11.
Four (groups of) phosphorylation sites exist in the large T antigen of simian virus 40, and they involve at least two serine and two threonine residues (Van Roy et al. J. Virol. 45:315-331, 1983). All the phosphorylation sites were found to be modified and again dephosphorylated at discrete rates, with phosphoserine residues having the highest turnover rate. The measured half-lives ranged between 3 h (for the carboxy-terminal phosphoserine site) and 5.5 h (for the amino-terminal phosphothreonine site). The influence of four temperature-sensitive A mutations on phosphorylation of large T antigen was also examined. At restrictive temperature, phosphorylation of the carboxy-terminal phosphoserine in mutated large T antigen was found to be particularly impaired. These data emphasize the physiological importance of the latter phosphorylation site.  相似文献   

12.
Transgenic mice expressing the simian virus 40 large T antigen (TAg) in enterocytes develop intestinal hyperplasia that progresses to dysplasia with age. This induction requires TAg action on the retinoblastoma (Rb) family of tumor suppressors and is independent of the p53 pathway. In cell culture systems, the inactivation of Rb proteins requires both a J domain in TAg that interacts with hsc70 and an LXCXE motif that directs association with Rb proteins. Together these elements are sufficient to release E2Fs from their association with Rb family members. We have generated transgenic mice that express a J domain mutant (D44N) in villus enterocytes. In contrast to wild-type TAg, the D44N mutant is unable to induce enterocyte proliferation. Histological and morphological examination revealed that mice expressing the J domain mutant have normal intestines without loss of growth control. Unlike mice expressing wild-type TAg, mice expressing D44N do not reduce the protein levels of p130 and are also unable to dissociate p130-E2F DNA binding complexes. Furthermore, mice expressing D44N in a null p130 background are still unable to develop hyperplasia. These studies demonstrate that the ectopic proliferation of enterocytes by TAg requires a functional J domain and suggest that the J domain is necessary to inactivate all three pRb family members.  相似文献   

13.
In simian virus 40-transformed cells, simian virus 40 large T antigen can be detected in different forms separable by sucrose density gradient centrifugation. In our experiments, light forms sedimented around 5 to 7S, oligomers such as tetramers were detected around 16S, and higher aggregates sedimented in a broad distribution reaching above 23S. The oligomers sedimenting at and above 16S could be disassembled into the slowly sedimenting 5 to 7S forms by chelating agents [EDTA or ethylene bis(oxonitrilo)tetraacetate]. After the addition of divalent cations (CaCl2 or MgCl2) in excess of chelating agents, oligomeric forms reassembled and appeared in a sedimentation pattern resembling that observed before treatment with chelating agents. Time course studies permitted the identification of the 5 to 7S forms as precursors upon pulse-labeling (15 min); the 16S and higher oligomers were identified as the successors after a 14-h chase. Treatment of extracts of pulse-chase-labeled cells with chelating agents again disassembled the oligomers, whereas pulse-labeled precursors did not change their 5 to 7S sedimentation pattern. Adding an excess of divalent cations reassembled the pulse-chase-labeled T antigen to oligomers but did not influence the sedimentation behavior of pulse-labeled 5 to 7S precursors. It is therefore reasonable to assume that a posttranslational modulation induces divalent cation binding, leading finally to the oligomerization of T antigen. Thus, some of the multifunctional activities of T antigen can be dictated by divalent cation binding properties.  相似文献   

14.
We investigated the molecular properties of eight temperature-sensitive mutants of simian virus 40 large T antigen (tsA mutants). The mutants have single amino acid substitutions that block DNA replication at 39 to 41 degrees C in vivo. In vitro, five of the mutant proteins were highly sensitive to a brief heat shock at 39 degrees C, while the three remaining proteins were only partially sensitive at 41 degrees C. We characterized the five most defective mutant proteins, using a variety of biochemical assays for replication functions of T antigen. Heat shock of purified T antigen with a mutation at amino acid 422 significantly impaired the oligomerization, origin-binding, origin-unwinding, ATPase, and helicase functions of T antigen. In contrast, substitution of amino acid 186, 357, 427, or 438 had more selective, temperature-sensitive effects on T-antigen functions. Our findings are consistent with the conclusion that T antigen functions via a hierarchy of interrelated domains. Only the ATPase activity remained intact in the absence of all other functions. Hexamer formation appears to be necessary for core origin-unwinding and helicase activities; the helicase function also requires ATPase activity. All five tsA mutants were impaired in functions important for the initiation of DNA replication, but three mutants retained significant elongation functions.  相似文献   

15.
The zinc finger region of simian virus 40 large T antigen   总被引:23,自引:21,他引:2       下载免费PDF全文
Simian virus 40 large T antigen contains a single sequence element with an arrangement of cysteines and histidines that is characteristic of a zinc finger motif. The finger region maps from amino acids 302 through 320 and has the sequence Cys-302LeuLysCys-305IleLysLysGluGlnProSerHisTyrLysTyrHis- 317GluLysHis-320. In a conventional representation, the binding of zinc to the cysteines and histidines at positions 302, 305, 317, and 320 would form two minor loops and one major loop from the intervening amino acids. We made single amino acid substitutions at every position in the finger to identify possible functional elements within the putative metal-binding domain. Amino acids in the zinc finger could be divided into three classes characterized by distinct roles in DNA replication and transformation. Class 1 consisted of amino acids in the two minor loops of the finger and in the amino-terminal part of the major loop. Mutations here did not affect either replication or transformation. Class 2 consisted of the SerHisTyrLysTyr amino acids located in the carboxy terminus of the major loop of the finger. Mutations in this contiguous region reduced replication of the mutant viruses to different degrees. This clustering suggested that the region is an active site important for a specific function in DNA replication. With the exception of a mutation in the histidine at position 313, these mutations had no effect on transformation. Class 3 consisted of the proposed zinc-binding amino acids at positions 302, 305, 317, and 320 and the histidine at position 313 in the major loop of the finger. Mutations in these amino acids abolished the viability of the virus completely and had a distinctive effect on the transforming functions of the protein. Thus, the five cysteines and histidines of class 3 may play an important role in determining the overall structure of the protein. The histidine at position 313 may function both in the active site where it is located and in cooperation with the proposed zinc-binding ligands.  相似文献   

16.
Simian virus 40 origin DNA-binding domain on large T antigen.   总被引:8,自引:29,他引:8       下载免费PDF全文
Fifty variant forms of simian virus 40 (SV40) large T antigen bearing point, multiple point, deletion, or termination mutations within a region of the protein thought to be involved in DNA binding were tested for their ability to bind to SV40 origin DNA. A number of the mutant large T species including some with point mutations were unable to bind, whereas many were wild type in this activity. The clustering of the mutations that are defective in origin DNA binding both reported here and by others suggests a DNA-binding domain on large T maps between residues 139 and approximately 220, with a particularly sensitive sequence between amino acids 147 and 166. The results indicate that the domain is involved in binding to both site I and site II on SV40 DNA, but it remains unclear whether it is responsible for binding to cellular DNA. Since all the mutants retain the ability to transform Rat-1 cells, we conclude that the ability of large T to bind to SV40 origin DNA is not a prerequisite for its transforming activity.  相似文献   

17.
K A Jones  R M Myers    R Tjian 《The EMBO journal》1984,3(13):3247-3255
We have tested the effects of various mutations within SV40 T antigen DNA recognition sites I and II on specific T antigen binding using the DNase footprint technique. In addition, the replication of plasmid DNA templates carrying these T antigen binding site mutations was monitored by Southern analysis of transfected DNA in COS cells. Deletion mapping of site I sequences defined a central core of approximately 18 bp that is both necessary and sufficient for T antigen recognition; this region contains the site I contact nucleotides that were previously mapped using methylation-interference and methylation-protection experiments. A similar deletion analysis delineated sequences that impart specificity of binding to site II. We find that T antigen is capable of specific recognition of site II in the absence of site I sequences, indicating that binding to site II in vitro is not dependent on binding of T antigen at site I. Site II binding was not diminished by small deletion or substitution mutations that perturb the 27-bp palindrome central to binding site II, whereas extensive substitution of site II sequences completely eliminated specific site II binding. Analysis of the replication in COS7 cells of plasmids that contain these mutant origins revealed that sequences both at the late side of binding site I and within the site II palindrome are crucial for viral DNA replication, but are not involved in binding T antigen.  相似文献   

18.
In mKSA cells (a simian virus 40-transformed BALB/c mouse tumor cell line), plasma membrane-associated large T antigen (large T) is found in two subfractions of the plasma membrane; a minor amount of large T is recovered from the Nonidet P-40 (NP-40)-soluble plasma membrane fraction, whereas the majority is tightly bound to a substructure of the plasma membrane, the plasma membrane lamina (PML). Only PML-associated large T is fatty acid acylated (U. Klockmann and W. Deppert, EMBO J. 2:1151-1157, 1983). We have analyzed whether these two forms of plasma membrane-associated large T might differ in features like cell surface expression or metabolic stability. In addition, we have asked whether one of the two large Ts might represent the hypothetic, large T-related protein T* (D. F. Mark and P. Berg, Cold Spring Harbor Symp. Quant. Biol. 44:55-62, 1979). We show that in mKSA cells grown in suspension culture, large T associated with the PML is also exposed on the cell surface. This form of large T, therefore, exhibits properties of a transmembrane protein. Large T in the NP-40-soluble plasma membrane fraction could not be labeled with radioiodine on the cell surface and, for this reason, does not seem to be oriented towards the cell surface. In contrast, when mKSA cells were grown on substratum (culture dish), we found that in these cells both NP-40-soluble large T as well as large T anchored in the PML could be cell surface iodinated. We also have analyzed the plasma membrane association of surface T antigen in mKSA cells grown in a mouse as ascites tumor. In tumor cells, only PML-bound large T is cell surface associated. We conclude that differences in extractibility of cell surface-associated large T most likely depend on cell shape and are not an artifact of cell culture. Both NP-40-soluble and PML-bound large Ts are associated with the plasma membrane in a metabolically stable fashion. Neither of the two large Ts represents T*.  相似文献   

19.
Simian virus 40 large T antigen binds to two types of nucleoprotein complexes from lytically infected cells: those containing replicating virus DNA (100S complexes) and those containing nonreplicating virus DNA (70S complexes). Analysis by agarose gel electrophoresis showed that replicating DNA was found exclusively in 100S complexes, although these complexes also contained large amounts of form I and form II DNA. In contrast, no replicating DNA was found in 70S complexes, and pulse-labeled DNA in these complexes migrated as form I and form II DNA that presumably had recently completed replication. Immunoprecipitation and gel electrophoresis showed that large T antigen was associated with both types of complexes. From 21 to 62% of replicating DNA in 100S complexes was bound to T antigen. Our estimates indicated, however, that more than three-fourths of the DNA molecules in 100S complexes were nonreplicating and unassociated with T antigen. In 70S complexes, 12 to 31% of pulse-labeled DNA was bound to T antigen, but because there were more DNA molecules in the 70S complexes, they contained a greater absolute amount of T antigen.  相似文献   

20.
Previous work has shown that murine embryonal carcinoma cells are refractory to infection with various viruses, including simian virus 40. Thus, large T and small t antigens, the products of the simian virus 40 early region, are not produced when the virus infects embryonal carcinoma cells, in contrast to other cell types. We show, by qualitative and quantitative analyses, that embryonal carcinoma cell hybrids, containing a simian virus 40 early region integrated into human DNA, are capable of producing viral large T antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号