共查询到20条相似文献,搜索用时 0 毫秒
1.
Ornithine is an allosteric activator of carbamoyl phosphate synthetase (CPS) from Escherichia coli. Nine amino acids in the vicinity of the binding sites for ornithine and potassium were mutated to alanine, glutamine, or lysine. The residues E783, T1042, and T1043 were found to be primarily responsible for the binding of ornithine to CPS, while E783 and E892, located within the carbamate domain of the large subunit, were necessary for the transmission of the allosteric signals to the active site. In the K loop for the binding of the monovalent cation potassium, only E761 was crucial for the exhibition of the allosteric effects of ornithine, UMP, and IMP. The mutations H781K and S792K altered significantly the allosteric properties of ornithine, UMP, and IMP, possibly by modifying the conformation of the K-loop structure. Overall, these mutations affected the allosteric properties of ornithine and IMP more than those of UMP. The mutants S792K and D1041A altered the allosteric regulation by ornithine and IMP in a similar way, suggesting common features in the activation mechanism exhibited by these two effectors. 相似文献
2.
Yefimenko I Fresquet V Marco-Marín C Rubio V Cervera J 《Journal of molecular biology》2005,349(1):127-141
Carbamoyl phosphate synthetase I (CPSI) deficiency, a recessively inherited error of the urea cycle, causes life-threatening hyperammonaemia. CPSI is a multidomain 1500-residue liver mitochondrial matrix protein that is allosterically activated by N-acetyl-l-glutamate, and which synthesises carbamoyl phosphate (CP) in three steps: bicarbonate phosphorylation by ATP, carbamate synthesis from carboxyphosphate and ammonia, and carbamate phosphorylation by ATP. Several missense mutations of CPSI have been reported in patients with CPSI deficiency, but the actual pathogenic potential and effects on the enzyme of these mutations remain non-characterised. Since the structure of Escherichia coli CPS is known and systems for its overexpression and purification are available, we have constructed and purified eight site-directed mutants of E.coli CPS affecting the enzyme large subunit (A126M, R169H, Q262P, N301K, P360L, V640R, R675L, S789P) that are homologous to corresponding missense mutations found in patients with CPSI deficiency, studying their stability and their ability to catalyse the CPS reaction as well as the partial reactions that reflect the different reactional steps, and analysing the substrate kinetics for the overall and partial reactions. The results show that all the mutations significantly decrease CP synthesis without completely inactivating the enzyme (as reflected in the catalysis of at least one partial reaction), that one of these mutations (Q262P) causes marked enzyme instability, and validate the use of E.coli CPS as a pathogenicity testing model for CPSI deficiency. The causality of the reported clinical mutations is supported and the derangements caused by the mutations are identified, revealing the specific roles of the residues that are mutated. In particular, the findings highlight the importance for carbamate phosphorylation and for allosteric activation of a loop that coordinates K(+), stress the key role of intersubunit interactions for CPS stability, and suggest that lid opening at both phosphorylation sites is concerted. 相似文献
3.
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli revealed the existence of a molecular tunnel that has been proposed to facilitate the translocation of reaction intermediates between remotely located active sites. Five highly conserved glutamate residues, including Glu-25, Glu-383, Glu-577, Glu-604, and Glu-916, are close together in two clusters in the interior wall of the molecular tunnel that enables the intermediate carbamate to migrate from the site of synthesis to the site of utilization. Two arginines, Arg-306 and Arg-848, are located at either end of the carbamate tunnel and participate in the binding of ATP at each of the two active sites within the large subunit of CPS. The mutation of Glu-25 or Glu-577 results in a diminution in the overall rate of carbamoyl phosphate formation. Similar effects are observed upon mutation of Arg-306 and Arg-848 to alanine residues. The conserved glutamate and arginine residues may function in concert with one another to control entry of carbamate into the tunnel prior to phosphorylation to carbamoyl phosphate. The electrostatic environment of tunnel interior may help to stabilize the tunnel architecture and prevent decomposition of carbamate through protonation. 相似文献
4.
Ronald J.A. Wanders Carlo Van Roermund Cor Lof Alfred J. Meijer 《Analytical biochemistry》1983,129(1):80-87
A simple fluorimetric assay for the determination of carbamoyl phosphate in tissue extracts is described. In the assay, production of ATP from carbamoyl phosphate and ADP by carbamate kinase is coupled to the formation of NADPH, using glucose, hexokinase, NADP+, and glucose-6-phosphate dehydrogenase. Production of NADPH in this system proved to be equal to the amount of carbamoyl phosphate present. 相似文献
5.
Mammalian glutamine-dependent carbamoyl phosphate synthetase (EC 2.7.2.9), the first enzyme of pyrimidine nucleotide biosynthesis, was strongly inhibited by polyamines at concentrations of 10?4 to 10?3 M. Spermine was the most effective, followed in order by spermidine and putrescine. The inhibition was partially reversed by increasing the concentration of Mg2+ or MgATP2?, or by adding low concentrations of 5-phosphoribosyl 1-pyrophosphate, an allosteric activator of the enzyme. Polyamines increased the apparent value of the enzyme for phosphoribosyl pyrophosphate. A possible physiological role of polyamines in widening the range of the effective concentrations of phosphoribosyl pyrophosphate as the activator for the enzyme is suggested. 相似文献
6.
Carbamoyl phosphate synthetase II encodes the first enzymic step of de novo pyrimidine biosynthesis. Carbamoyl phosphate synthetase II is essential for Toxoplasma gondii replication and virulence. In this study, we characterised the primary structure of a 28kb gene encoding Toxoplasma gondii carbamoyl phosphate synthetase II. The carbamoyl phosphate synthetase II gene was interrupted by 36 introns. The predicted protein encoded by the 37 carbamoyl phosphate synthetase II exons was a 1,687 amino acid polypeptide with an N-terminal glutamine amidotransferase domain fused with C-terminal carbamoyl phosphate synthetase domains. This bifunctional organisation of carbamoyl phosphate synthetase II is unique, so far, to protozoan parasites from the phylum Apicomplexa (Plasmodium, Babesia, Toxoplasma) or zoomastigina (Trypanosoma, Leishmania). Apicomplexan parasites possessed the largest carbamoyl phosphate synthetase II enzymes due to insertions in the glutamine amidotransferase and carbamoyl phosphate synthetase domains that were not present in the corresponding gene segments from bacteria, plants, fungi and mammals. The C-terminal allosteric regulatory domain, the carbamoyl phosphate synthetase linker domain and the oligomerisation domain were also distinct from the corresponding domains in other species. The novel C-terminal regulatory domain may explain the lack of activation of Toxoplasma gondii carbamoyl phosphate synthetase II by the allosteric effector 5-phosphoribosyl 1-pyrophosphate. Toxoplasma gondii growth in vitro was markedly inhibited by the glutamine antagonist acivicin, an inhibitor of glutamine amidotransferase activity typically associated with carbamoyl phosphate synthetase II, guanosine monophosphate synthetase, or CTP synthetase. 相似文献
7.
The ATP-grasp fold is found in enzymes that catalyze the formation of an amide bond and occurs twice in carbamoyl phosphate synthetase. We have used site-directed mutagenesis to further define the relationship of these ATP folds to the ATP-grasp family and to probe for distinctions between the two ATP sites. Mutations at D265 and D810 severely diminished activity, consistent with consensus ATP-grasp roles of facilitating the transfer of the gamma-phosphate group of ATP. H262N was inactive whereas H807N, the corresponding mutation in the second ATP domain, exhibited robust activity, suggesting that these residues were not involved in the ATP-grasp function common to both domains. Mutations at I316 were somewhat catalytically impaired and were structurally unstable, consistent with a consensus role of interaction with the adenine and/or ribose moiety of ATP. L229G was too unstable to be purified and characterized. S228A showed essentially wild-type behavior. 相似文献
8.
J B Thoden F M Raushel G Wesenberg H M Holden 《The Journal of biological chemistry》1999,274(32):22502-22507
Carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate, which is subsequently employed in both the pyrimidine and arginine biosynthetic pathways. The reaction mechanism is known to proceed through at least three highly reactive intermediates: ammonia, carboxyphosphate, and carbamate. In keeping with the fact that the product of CPS is utilized in two competing metabolic pathways, the enzyme is highly regulated by a variety of effector molecules including potassium and ornithine, which function as activators, and UMP, which acts as an inhibitor. IMP is also known to bind to CPS but the actual effect of this ligand on the activity of the enzyme is dependent upon both temperature and assay conditions. Here we describe the three-dimensional architecture of CPS with bound IMP determined and refined to 2.1 A resolution. The nucleotide is situated at the C-terminal portion of a five-stranded parallel beta-sheet in the allosteric domain formed by Ser(937) to Lys(1073). Those amino acid side chains responsible for anchoring the nucleotide to the polypeptide chain include Lys(954), Thr(974), Thr(977), Lys(993), Asn(1015), and Thr(1017). A series of hydrogen bonds connect the IMP-binding pocket to the active site of the large subunit known to function in the phosphorylation of the unstable intermediate, carbamate. This structural analysis reveals, for the first time, the detailed manner in which CPS accommodates nucleotide monophosphate effector molecules within the allosteric domain. 相似文献
9.
New treatments need to be developed for the significant human diseases of toxoplasmosis and malaria to circumvent problems with current treatments and drug resistance. Apicomplexan parasites causing these lethal diseases are deficient in pyrimidine salvage, suggesting that selective inhibition of de novo pyrimidine biosynthesis can lead to a severe loss of uridine 5′-monophosphate (UMP) and thymidine 5′-monophosphate (dTMP) pools, thereby inhibiting parasite RNA and DNA synthesis. Disruption of Toxoplasma gondii carbamoyl phosphate synthetase II (CPSII) induces a severe uracil auxotrophy with no detectable parasite replication in vitro and complete attenuation of virulence in mice. Here we show that a CPSII cDNA minigene efficiently complements the uracil auxotrophy of CPSII-deficient mutants, restoring parasite growth and virulence. Our complementation assays reveal that engineered mutations within, or proximal to, the catalytic triad of the N-terminal glutamine amidotransferase (GATase) domain inactivate the complementation activity of T. gondii CPSII and demonstrate a critical dependence on the apicomplexan CPSII GATase domain in vivo. Surprisingly, indels present within the T. gondii CPSII GATase domain as well as the C-terminal allosteric regulatory domain are found to be essential. In addition, several mutations directed at residues implicated in allosteric regulation in Escherichia coli CPS either abolish or markedly suppress complementation and further define the functional importance of the allosteric regulatory region. Collectively, these findings identify novel features of T. gondii CPSII as potential parasite-selective targets for drug development. 相似文献
10.
Replacement by alanine of Ser-948, Thr-974 and Lys-954 of Escherichia coli carbamoyl phosphate synthetase (CPS) shows that these residues are involved in binding the allosteric inhibitor UMP and the activator IMP. The mutant CPSs are active in vivo and in vitro and exhibit normal activation by ornithine, but the modulation by both UMP and IMP is either lost or diminished. The results demonstrate that the sites for UMP and IMP overlap and that the activator ornithine binds elsewhere. Since the mutated residues were found in the crystal structure of CPS near a bound phosphate, Ser-948, Thr-974 and Lys-954 bind the phosphate moiety of UMP and IMP. 相似文献
11.
Duane L. Pierson 《Journal of biochemical and biophysical methods》1980,3(1):31-37
A rapid, reproducible, and sensitive colorimetric assay for carbamyl phosphate synthetase I was presented. A four-fold increase in sensitivity and reduced assay time were afforded by this procedure. The method utilized the chemical conversion of carbamyl phosphate to hydroxyurea by the action of hydroxylamine instead of employing a coupling enzyme. The hydroxyurea was quantitated in 15 min by an improved colorimetric assay for ureido compounds by measuring the absorption of the resulting chromophore at 458 nm. Optimum conditions for both the formation and quantitation of hydroxyurea were established. Activity measurements of carbamyl phosphate synthetase I obtained by this uncoupled method were identical with those obtained by the ornithine transcarbamylase coupld assay. 相似文献
12.
ATP-binding cassette (ABC) transporters move solutes across membranes and are associated with important diseases, including cystic fibrosis and multi-drug resistance. These molecular machines are energized by their charateristic ABC modules, molecular engines fuelled by ATP hydrolysis. A solution NMR study of a model ABC, Methanococcus jannaschii protein MJ1267, reveals that ADP-Mg binding alters the flexibilities of key ABC motifs and induces allosteric changes in conformational dynamics in the LivG insert, over 30A away from the ATPase active site. (15)N spin relaxation data support a "selected-fit" model for nucleotide binding. Transitions between rigidity and flexibility in key motifs during the ATP hydrolysis cycle may be crucial to mechanochemical energy transduction in ABC transporters. The restriction of correlated protein motions is likely a central mechanism for allosteric communications. Comparison between dynamics data from NMR and X-ray crystallography reveals their overall consistency and complementarity. 相似文献
13.
The role of residues of the ornithine activator site is probed by mutagenesis in Escherichia coli carbamoyl phosphate synthetase (CPS). Mutations E783A, E783L, E892A and E892L abolish ornithine binding, E783D and T1042V decrease 2-3 orders of magnitude and E892D decreased 10-fold apparent affinity for ornithine. None of the mutations inactivates CPS. E783 mutations hamper carbamate phosphorylation and increase K(+) and MgATP requirements, possibly by perturbing the K(+)-loop near the carbamate phosphorylation site. Mutation E892A activates the enzyme similarly to ornithine, possibly by altering the position of K891 at the opening of the tunnel that delivers the carbamate to its phosphorylation site. T1042V also influences modulation by IMP and UMP, supporting signal transmission from the nucleotide effector to the ornithine site mediated by a hydrogen bond network involving T1042. Ornithine activation of CPS may be mediated by K(+)-loop and tunnel gating changes. 相似文献
14.
The large subunit of Escherichia coli carbamoyl phosphate synthetase (a polypeptide of 117.7 kDa that consists of two homologous halves) is responsible for carbamoyl phosphate synthesis from NH3 and for the binding of the allosteric activators ornithine and IMP and of the inhibitor UMP. Elastase, trypsin, and chymotrypsin inactivate the enzyme and cleave the large subunit at a site approximately 15 kDa from the COOH terminus (demonstrated by NH2-terminal sequencing). UMP, IMP, and ornithine prevent this cleavage and the inactivation. Upon irradiation with ultraviolet light in the presence of [14C]UMP, the large subunit is labeled selectively and specifically. The labeling is inhibited by ornithine and IMP. Cleavage of the 15-kDa COOH-terminal region by prior treatment of the enzyme with trypsin prevents the labeling on subsequent irradiation with [14C]UMP. The [14C]UMP-labeled large subunit is resistant to proteolytic cleavage, but if it is treated with SDS the resistance is lost, indicating that UMP is cross-linked to its binding site and that the protection is due to conformational factors. In the presence of SDS, the labeled large subunit is cleaved by trypsin or by V8 staphylococcal protease at a site located 15 or 25 kDa, respectively, from the COOH terminus (shown by NH2-terminal sequencing), and only the 15- or 25-kDa fragments are labeled. Similarly, upon cleavage of the aspartyl-prolyl bonds of the [14C]UMP-labeled enzyme with 70% formic acid, labeling was found only in the 18.5-kDa fragment that contains the COOH terminus of the subunit. Thus, UMP binds to the COOH-terminal domain.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
Regulation of Escherichia coli carbamyl phosphate synthetase by UMP and IMP was examined in studies with various analogs of these nucleotides. Whereas UMP inhibits enzyme activity, the arabinose analog of UMP was found to be an activator. dUMP neither activates nor inhibits, but binds to the enzyme in a manner similar to UMP as evaluated by direct binding studies, sedimentation behavior, and ultraviolet difference spectral measurements. dUMP decreases inhibition by UMP and activation by IMP, but has no effect on activation by L-ornithine. The findings are in accord with the view that IMP and UMP bind to the same region of the enzyme; a possible general model for such overlapping binding sites is considered. Additional evidence is presented that inorganic phosphate can modulate regulation of the activity by nucleotides. Phosphate (and arsenate) markedly increase inhibition by UMP, decrease activation by IMP, but do not affect activation by L-ornithine. The extent of activation by IMP and by L-ornithine and that of inhibition by UMP are decreased when Mg2+ concentrations are increased relative to a fixed concentration of ATP. The findings suggest that the allosteric effectors may affect affinity of the enzyme for divalent metal ions as well as, as previously shown, the affinity of the enzyme for Mg-ATP. 相似文献
16.
Mammalian liver mitochondrial carbamoyl phosphate synthetase, a polypeptide of 160 kDa, is activated allosterically by N-acetyl-L-glutamate. The analogue of this activator N-(chloroacetyl)-L-[14C]glutamate has been found to serve as a photoaffinity label for this enzyme. The specificity was demonstrated by the drastic reduction in the radioactivity bound to the protein when (a) an excess of unlabeled acetylglutamate was present during the irradiation and (b) the enzyme was replaced by pyruvate kinase, an enzyme that is not affected by acetylglutamate. The labeling was due to the photoactivation of the chloroacetyl group since there was no labeling under equal conditions with acetyl[14C]glutamate. To localize the binding site, limited proteolysis was used. Trypsin cleaves carbamoyl phosphate synthetase into complementary NH2- and COOH-terminal fragments of about 140 and 20 kDa, respectively [Powers-Lee, S. G., & Corina, K. (1986) J. Biol. Chem. 261, 15349-15352], but only the latter was found to be labeled. Similarly, of the various fragments generated by elastase, only two, of 20 and 120 kDa, contain the COOH terminus [see Powers-Lee and Corina (1986) above] and were found to be labeled. Thus, the binding site for acetylglutamate is within 20 kDa from the COOH terminus. This excludes the possibility that the acetylglutamate binding site evolved from an ancestral substrate site for glutamine: this substrate binds to the small subunit of the Escherichia coli enzyme, which is homologous to the NH2-terminal domain of the rat liver enzyme. Exhaustive tryptic digestion of photolabeled carbamoyl phosphate synthetase yielded a single radioactive peak, suggesting that the labeling is restricted to a single minimal tryptic peptide. 相似文献
17.
The mechanism by which pyruvate kinase (PK) is allosterically activated by fructose-1,6-bisphosphate (FBP) is poorly understood. To identify residues key to allostery of yeast PK, a point mutation strategy was used. T403E and R459Q mutations in the FBP binding site caused reduced FBP affinity. Introducing positive charges at the 403, 458, and 406 positions in the FBP binding site had little consequence. The mutation Q299N in the A [bond] A subunit interface caused the enzyme response to ADP to be sensitive to FBP. The T311M A [bond] A interface mutant has a decreased affinity for PEP and FBP, and is dependent on FBP for activity. The R369A mutation in the C [bond] C interface only moderately influenced allostery. Creating an E392A mutation in the C [bond] C subunit interface eliminated all cooperativity and allosteric regulation. None of the seven A [bond] C domain interface mutations altered allostery. A model that includes a central role for E392 in allosteric regulation of yeast PK is proposed. 相似文献
18.
Hazel M Holden James B Thoden Frank M Raushel 《Current opinion in structural biology》1998,8(6):679-685
The direct transfer of metabolites from one protein to another in a biochemical pathway or between one active site and another within a single enzyme has been described as substrate channeling. The first structural visualization of such a phenomenon was provided by the X-ray crystallographic analysis of tryptophan synthase, in which a tunnel of approximately 25 Å in length was observed. The recently determined three-dimensional structure of carbamoyl phosphate synthetase sets a new long distance record in that the three active sites are separated by nearly 100 Å. 相似文献
19.
Ming Li Ji Zhang Chongxi Liu Baozhu Fang Xiangjing Wang Wensheng Xiang 《Biochemical and biophysical research communications》2014
Borrelidin exhibits a wide spectrum of biological activities and has been considered as a non-competitive inhibitor of threonyl-tRNA synthetase (ThrRS). However, the detailed mechanisms of borrelidin against ThrRS, especially borrelidin binding site on ThrRS, are still unclear, which limits the development of novel borrelidin derivatives and rational design of structure-based ThrRS inhibitors. In this study, the binding site of borrelidin on Escherichia coli ThrRS was predicted by molecular docking. To validate our speculations, the ThrRS mutants of E. coli (P424K, E458Δ, and G459Δ) were constructed and their sensitivity to borrelidin was compared to that of the wild-type ThrRS by enzyme kinetics and stopped-flow fluorescence analysis. The docking results showed that borrelidin binds the pocket outside but adjacent to the active site of ThrRS, consisting of residue Y313, R363, R375, P424, E458, G459, and K465. Site-directed mutagenesis results showed that sensitivities of P424K, E458Δ, and G459Δ ThrRSs to borrelidin were reduced markedly. All the results showed that residue Y313, P424, E458, and G459 play vital roles in the binding of borrelidin to ThrRS. It indicated that borrelidin may induce the cleft closure, which blocks the release of Thr-AMP and PPi, to inhibit activity of ThrRS rather than inhibit the binding of ATP and threonine. This study provides new insight into inhibitory mechanisms of borrelidin against ThrRS. 相似文献
20.
A somewhat neglected but essential aspect of the molecular physiology of hyperthermophiles is the protection of thermolabile metabolites and coenzymes. An example is carbamoyl phosphate (CP), a precursor of pyrimidines and arginine, which is an extremely labile and potentially toxic intermediate. The first evidence for a biologically significant interaction between carbamate kinase (CK) and ornithine carbamoyltransferase (OTC) from Pyrococcus furiosus was provided by affinity electrophoresis and co-immunoprecipitation in combination with cross-linking (Massant et al. 2002). Using the yeast two-hybrid system, Hummel-Dreyer chromatography and isothermal titration calorimetry, we obtained additional concrete evidence for an interaction between CK and OTC, the first evidence for an interaction between CK and aspartate carbamoyltransferase (ATC) and an estimate of the binding constant between CK and ATC. The physical interaction between CK and OTC or ATC may prevent thermodenaturation of CP in the aqueous cytoplasmic environment. Here we emphasize the importance of developing experimental approaches to investigate the mechanism of thermal protection of metabolic intermediates by metabolic channeling and the molecular basis of transient protein-protein interactions in the physiology of hyperthermophiles. 相似文献