首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbonic anhydrases in higher plants and aquatic microorganisms   总被引:2,自引:1,他引:2  
At physiological pH-values CO2 and HCO3are the dominant inorganic carbon species and the interconversion between both is catalyzed by carbonic anhydrase (EC 4.2.1.1). This enzyme is widely distributed among photosynthetic organisms. In the first part of the review, the similarities and the differences of carbonic anhydrases from plants and animals are briefly described. In the second part recent advances in molecular biology to understand the structure of carbonic anhydrase from higher terrestrial plants as well as its involvement in photosynthetic CO2 fixation are summarized. Lastly, the review deals with the presence of carbonic anhydrase in aquatic organisms including cyanobacteria, microalgae, macroalgae and angiosperms. Evidence for the presence of extracellular and intracellular isozymes in these organisms are discussed. The properties and function(s) of carbonic anhydrase during the operation of the inorganic carbon concentrating mechanism are also described.  相似文献   

2.
The chloroplast chaperonin system of plants and green algae is a curiosity as both the chaperonin cage and its lid are encoded by multiple genes, in contrast to the single genes encoding the two components of the bacterial and mitochondrial systems. In the green alga Chlamydomonas reinhardtii (Cr), three genes encode chaperonin cofactors, with cpn10 encoding a single ~10-kDa domain and cpn20 and cpn23 encoding tandem cpn10 domains. Here, we characterized the functional interaction of these proteins with the Escherichia coli chaperonin, GroEL, which normally cooperates with GroES, a heptamer of ~10-kDa subunits. The C. reinhardtii cofactor proteins alone were all unable to assist GroEL-mediated refolding of bacterial ribulose-bisphosphate carboxylase/oxygenase but gained this ability when CrCpn20 and/or CrCpn23 was combined with CrCpn10. Native mass spectrometry indicated the formation of hetero-oligomeric species, consisting of seven ~10-kDa domains. The cofactor "heptamers" interacted with GroEL and encapsulated substrate protein in a nucleotide-dependent manner. Different hetero-oligomer arrangements, generated by constructing cofactor concatamers, indicated a preferential heptamer configuration for the functional CrCpn10-CrCpn23 complex. Formation of heptamer Cpn10/Cpn20 hetero-oligomers was also observed with the Arabidopsis thaliana (At) cofactors, which functioned with the chloroplast chaperonin, AtCpn60α(7)β(7). It appears that hetero-oligomer formation occurs more generally for chloroplast chaperonin cofactors, perhaps adapting the chaperonin system for the folding of specific client proteins.  相似文献   

3.
4.
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.  相似文献   

5.
The harderian gland is located within the orbit of the eye of most terrestrial vertebrates. It is especially noticeable in rodents, in which it synthesises lipids, porphyrins, and indoles. Various functions have been ascribed to the harderian gland, such as lubrication of the eyes, a site of immune response, and a source of growth factors. Carbonic anhydrases (CAs) are zinc-containing metalloenzymes that catalyse the reaction \( {\text{CO}}_{2} + {\text{H}}_{2} {\text{O}} \Leftrightarrow {\text{H}}^{ + } + {\text{HCO}}_{3}^{ - } \). They are involved in the adjustment of pH in the secretions of different glands. Thirteen enzymatically active isozymes have been described in the mammalian α-CA family. Here, we first investigated the mRNA expression of all 13 active CAs in the mouse harderian gland by quantitative real-time PCR. Nine CA mRNAs were detectable in the gland. Car5b and Car13 showed the highest signals. Car4, Car6, and Car12 showed moderate expression levels, whereas Car2, Car3, Car7, and Car15 mRNAs were barely within the detection limits. Immunohistochemical staining was performed to study the expression of Car2, Car4, Car5b, Car12, and Car13 at the protein level. The epithelial cells were intensively stained for CAVB, whereas only weak signal was detected for CAXIII. Positive signals for CAIV and CAXII were observed in the capillary endothelial cells and the basolateral plasma membrane of the epithelial cells, respectively. This study provides an expression profile of all CAs in the mouse harderian gland. These results should improve our understanding of the distribution of CA isozymes and their potential roles in the function of harderian gland. The high expression of mitochondrial CAVB at both mRNA and protein levels suggests a role in lipid synthesis, a key physiological process of the harderian gland.  相似文献   

6.
7.
Cyanobacteria, algae, aquatic angiosperms and higher plants have all developed their own unique versions of photosynthetic CO2 concentrating mechanisms (CCMs) to aid Rubisco in efficient CO2 capture. An important aspect of all CCMs is the critical roles that the specialised location and function that various carbonic anhydrase enzymes play in the overall process, participating the interconversion of CO2 and HCO3 species both inside and outside the cell. This review examines what we currently understand about the nature of the carbonic anhydrase enzymes, their localisation and roles in the various CCMs that have been studied in detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Carbonic anhydrases were first identified in red blood cells and have been thus traditionally addressed in a hematological context. However, recently there has been a shift of research interest to therapeutic areas, notably in solid cancers, relegating the impact of carbonic anhydrase function and pathological dysfunction in blood related physiology to secondary importance. This review addresses this paradigm and emphasizes the potential impact of recent studies on blood related carbonic anhydrase isotype expression and modulation in diverse areas such as physiology and pathology, biosensing, their use as biomarkers, and in the development of synthetic blood. A special emphasis is placed on reviewing new dynamic and quantitative studies that allow for the efficient tracking and quantitation of various carbonic anhydrase isozymes within the blood and more generally within the human body, that give new perspectives on the biochemical and physiological role of blood associated carbonic anhydrase in health and pathology.  相似文献   

9.
For the assembly of a functional chloroplast, the coordinated expression of genes distributed between nucleus and chloroplasts is a prerequisite. While the nucleus plays an undisputed dominant role in controling biogenesis and functioning of chloroplasts, plastidic signals appear to control the expression of a subset of nuclear genes; the majority of which encodes chloroplast constituents. Tetrapyrrole biosynthesis intermediates are attractive candidates for one type of plastidic signal ever since an involvement of Mg–porphyrins in signaling from chloroplast to nucleus was first demonstrated in Chlamydomonas reinhardtii. Since then, Mg-protoporphyrin IX has been shown to exert a regulatory function on nuclear genes in higher plants as well. Here we review evidence for the role played by tetrapyrroles in inter-organellar communication. We also report on a screening for nuclear genes that may be subject to regulation by tetrapyrroles. This revealed that (i) >HEMA, the gene encoding the first enzyme specific for porphyrin biosynthesis is induced by Mg-protoporphyrin IX, (ii) several nuclear HSP70 genes are regulated by tetrapyrroles. Members of the gene family induced by the feeding of Mg–rotoporphyrin IX encode chaperones located in either the chloroplast or the cytosol. These results point to an important role of Mg–tetrapyrroles as plastidic signal in controling the initial step of porphyrin biosynthesis, and the synthesis of chaperones involved in protein folding in cytosol/stroma, protein transport into organelles, and the stress response.  相似文献   

10.
Cyanobacteria produce a large number and variety of bioactive allelochemical substances, with a diverse range of biological activities and chemical structures, and with effects on many biochemical processes within cells. An increasing number of such metabolites is being found to be directed against oxygenic photosynthetic processes, which, in the microbial world, are unique to algae and cyanobacteria. Such chemicals are likely to be involved in regulating natural populations, and are potentially useful as biochemical tools, and as herbicidal or biocontrol agents. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
State 1/State 2 changes in higher plants and algae   总被引:3,自引:0,他引:3  
Current ideas regarding the molecular basis of State 1/State 2 transitions in higher plants and green algae are mainly centered around the view that excitation energy distribution is controlled by phosphorylation of the light-harvesting complex of photosystem II (LHC-II). The evidence supporting this view is examined and the relationship of the transitions occurring in these systems to the corresponding transitions seen in red and blue-green algae is explored.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - Chl a chlorophyll a - Chl b chlorophyll b - DAD diaminodurene - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD N,N-dicyclohexyl carbodiimide - DCMU 3-(3,4-dichlorophenyl)-l,l-dimethylurea (also called diuron) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - FSBA 5-fluorosulphonylbenzoyl adenosine - kDa kilodalton - LHC-II light-harvesting Chl a/Chl b protein - PMS phenazine methosulfate - PS I photosystem I - PS II photosystem II - SDS sodium dodecyl sulfate - TPTC triphenyl tin chloride This paper follows our new instructions for citation of references—authors are requested to follow Photosynth Res 10: 519–526 (1986)—editors.  相似文献   

12.
Unicellular green algae have a dissolved inorganic carbon (DIC) concentrating mechanism, commonly known as the DIC pump, to concentrate inorganic carbon into cells and chloroplasts. The DIC pump activity is normally measured as the K0.5(DIC) that equals the CO2 plus HCO3‐ concentration at a cited pH at which the rate of DIC‐dependent photosynthetic O2 evolution is half‐maximal, or by the amount of intra‐cellular DIC accumulation in 15–60 s, using a limited amount of NaH14CO3, measured by the silicone oil cen‐trifugation technique. The dissolved oxygen in the assay inhibits or reduces the DIC uptake by the cells of unicellular green algae Chlamydomonas reinhardtii Dangeard, strain 137 and in a cell wall‐less marine algae Dunaliella tertiolecta Butcher. The algal cells concentrated the highest amount of DIC when little or no oxygen was present in the assay medium. The results suggest that the amount of O2 and DIC must be carefully monitored before DIC‐pump assay.  相似文献   

13.
14.
Many eukaryotic green algae possess biophysical carbon‐concentrating mechanisms (CCMs) that enhance photosynthetic efficiency and thus permit high growth rates at low CO2 concentrations. They are thus an attractive option for improving productivity in higher plants. In this study, the intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas reinhardtii were confirmed. When expressed in tobacco, all of these components except chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2 proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3, membrane location and Ci transport capacity were confirmed by heterologous expression and H14CO3 uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in growth comparable with that of wild‐type plants. We conclude that CCM components from Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and retargeted to appropriate locations in higher plant cells. As expression of individual Ci transporters did not enhance Arabidopsis growth, stacking of further CCM components will probably be required to achieve a significant increase in photosynthetic efficiency in this species.  相似文献   

15.
A series of 6-substituted ureido- and thioureido-benzoxaboroles were investigated as inhibitors of carbonic anhydrases from Trypanosoma cruzi (TcCA), and Leishmania donovani chagasi (LdcCA). Both enzymes were inhibited by benzoxaboroles in the micromolar range. Preferential inhibitory potency against the β-CA LdcCA versus the α-CA TcCA was observed with submicromolar inhibitory activities. Some derivatives displayed excellent inhibitory and selectivity profile over the ubiquitous and physiological relevant human off-target hCA II. This study provides a convincing opportunity to study benzoxaborole scaffold for the design of antiprotozoan potential drugs targeting the pathogen’s carbonic anhydrases.  相似文献   

16.
The subcellular localization of carbonic anhydrase (CA) IV and CA IX in mouse skeletal muscle fibers has been studied immunohistochemically by confocal laser scanning microscopy. CA IV has been found to be located on the plasma membrane as well as on the sarcoplasmic reticulum (SR) membrane. CA IX is not localized in the plasma membrane but in the region of the t-tubular (TT)/terminal SR membrane. CA IV contributes 20% and CA IX 60% to the total CA activity of SR membrane vesicles isolated from mouse skeletal muscles. Our aim was to examine whether SR CA IV and TT/SR CA IX affect muscle contraction. Isolated fiber bundles of fast-twitch extensor digitorum longus and slow-twitch soleus muscle from mouse were investigated for isometric twitch and tetanic contractions and by a fatigue test. The muscle functions of CA IV knockout (KO) fibers and of CA IX KO fibers do not differ from the function of wild-type (WT) fibers. Muscle function of CA IV/XIV double KO mice unexpectedly shows a decrease in rise and relaxation time and in force of single twitches. In contrast, the CA inhibitor dorzolamide, whether applied to WT or to double KO muscle fibers, leads to a significant increase in rise time and force of twitches. It is concluded that the function of mouse skeletal muscle fibers expressing three membrane-associated CAs, IV, IX, and XIV, is not affected by the lack of one isoform but is possibly affected by the lack of all three CAs, as indicated by the inhibition studies.  相似文献   

17.
Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e., CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/ biomedical applications of such compounds in different fields of life sciences.  相似文献   

18.
Carbonic anhydrase in relation to higher plants   总被引:12,自引:0,他引:12  
The review incorporates recent information on carbonic anhydrase (CA, EC: 4.2.1.1) pertaining to types, homology, regulation, purification, in vitro stability, and biological functions with special reference to higher plants. CA, a ubiquitous enzyme in prokaryotes and higher organisms represented by four distinct families, is involved in diverse biological processes, including pH regulation, CO2 transfer, ion exchange, respiration, and photosynthetic CO2 fixation. CA from higher plants traces its origin with prokaryotes and exhibits compartmentalization among their organs, tissues, and cellular organelles commensurate with specific functions. In leaves, CA represents 1–20 % of total soluble protein and abundance next only to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in chloroplast, facilitating CO2 supply to phosphoenol pyruvate carboxylase in C4 and CAM plants and RuBPCO in C3 plants. It confers special significance to CA as an efficient biochemical marker for carbon sequestration and environmental amelioration in the current global warming scenario linked with elevated CO2 concentrations.  相似文献   

19.
The genetic transformation of plant cells is critically dependent on the availability of efficient selectable marker gene. Sulfonamides are herbicides that, by inhibiting the folic acid biosynthetic pathway, suppress the growth of untransformed cells. Sulfonamide resistance genes that were previously developed as selectable markers for plant transformation were based on the assumption that, in plants, the folic acid biosynthetic pathway resides in the chloroplast compartment. Consequently, the Sul resistance protein, a herbicide‐insensitive dihydropteroate synthase, was targeted to the chloroplast. Although these vectors produce transgenic plants, the transformation efficiencies are low compared to other markers. Here, we show that this inefficiency is due to the erroneous assumption that the folic acid pathway is located in chloroplasts. When the RbcS transit peptide was replaced by a transit peptide for protein import into mitochondria, the compartment where folic acid biosynthesis takes place in yeast, much higher resistance to sulfonamide and much higher transformation efficiencies are obtained, suggesting that current sul vectors are likely to function due to low‐level mistargeting of the resistance protein to mitochondria. We constructed a series of optimized transformation vectors and demonstrate that they produce transgenic events at very high frequency in both the seed plant tobacco and the green alga Chlamydomonas reinhardtii. Co‐transformation experiments in tobacco revealed that sul is even superior to nptII, the currently most efficient selectable marker gene, and thus provides an attractive marker for the high‐throughput genetic transformation of plants and algae.  相似文献   

20.
By measuring the effect of cyanide on the flash-induced redox reactions of the cytochrome (cyt) b 6/f complex we carried out a comparative study in order to characterize the interaction between the photosynthetic and the respiratory electron transport systems in cyanobacterial (Synechococcus sp. PCC 6301) and green algal (Chlamydomonas reinhardtii) cells, and in tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) protoplasts. We found that the addition of 1 mM KCN resulted in a significant acceleration of the rereduction-rate of cyt f +. This enhancement of the activity of the cyt b 6/f complex apparently occurred with the same mechanism in prokaryotes and eukaryotes, and its dependence on the concentration of KCN in eukaryotes ruled out an origin in mitorespiration, superoxide dismutase and plastocyanin, strongly suggesting that a cyanide-sensitive terminal oxidase, a putative component of chlororespiration, competes with photosystem 1 (PS1) for electrons from the plastoquionone (PQ) pool. Concerning the physiological role of the competition between the (chloro)respiratory and the photosynthetic electron transport systems, our data obtained with cyanobacterial and algal cells incubated at elevated temperatures (30–50 °C) showed that the respiratory control over photosynthesis became significant in cells exposed to heat-stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号