首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that liposomes with differential lipid components display differential adjuvant effects when Ags are chemically coupled to their surfaces. In the present study, Ag presentation of liposome-coupled OVA was investigated in vitro, and it was found that OVA coupled to liposomes made using unsaturated fatty acid was presented to both CD4+ and CD8+ T cells, whereas OVA coupled to liposomes made using saturated fatty acid was presented only to CD4+ T cells. Confocal laser scanning microscopic analysis demonstrated that a portion of the OVA coupled to liposomes made using unsaturated, but not saturated fatty acid, received processing beyond the MHC class II compartment, suggesting that the degradation of OVA might occur in the cytosol, and that the peptides generated in this manner would be presented to CD8+ T cells via MHC class I. The ability to induce cross-presentation of an Ag coupled to liposomes consisting of unsaturated fatty acid was further confirmed by in vivo induction of CTL and by the induction of tumor eradication in mice; E.G7 tumors in mice that received combined inoculation with OVA(257-264)-liposome conjugates, CpG, and anti-IL-10 mAbs were completely eradicated. In those mice, the frequency of CD8+ T cells reactive with OVA(257-264) peptides in the context of H-2K(b) was significantly increased. These results suggested that, by choosing lipid components for liposomes, surface-coupled liposomal Ags might be applicable for the development of tumor vaccines to present tumor Ags to APCs and induce antitumor responses.  相似文献   

2.
We have previously demonstrated that antigens chemically coupled to the surface of liposomes consisting of unsaturated fatty acids were cross-presented by antigen-presenting cells (APCs) to CD8+ T cells, and that this process resulted in the induction of antigen-specific cytotoxic T lymphocytes. In the present study, the mechanism by which the liposome-coupled antigens were cross-presented to CD8+ T cells by APCs was investigated. Confocal laser scanning microscopic analysis demonstrated that antigens coupled to the surface of unsaturated-fatty-acid-based liposomes received processing at both MHC class I and class II compartments, while most of the antigens coupled to the surface of saturated-fatty-acid-based liposomes received processing at the class II compartment. In addition, flow cytometric analysis demonstrated that antigens coupled to the surface of unsaturated-fatty-acid-liposomes were taken up by APCs even in a 4°C environment; this was not true of saturated-fatty-acid-liposomes. When two kinds of inhibitors, dimethylamiloride (DMA) and cytochalasin B, which inhibit pinocytosis and phagocytosis by APCs, respectively, were added to the culture of APCs prior to the antigen pulse, DMA but not cytochalasin B significantly reduced uptake of liposome-coupled antigens. Further analysis of intracellular trafficking of liposomal antigens using confocal laser scanning microscopy revealed that a portion of liposome-coupled antigens taken up by APCs were delivered to the lysosome compartment. In agreement with the reduction of antigen uptake by APCs, antigen presentation by APCs was significantly inhibited by DMA, and resulted in the reduction of IFN-γ production by antigen-specific CD8+ T cells. These results suggest that antigens coupled to the surface of liposomes consisting of unsaturated fatty acids might be pinocytosed by APCs, loaded onto the class I MHC processing pathway, and presented to CD8+ T cells. Thus, these liposome-coupled antigens are expected to be applicable for the development of vaccines that induce cellular immunity.  相似文献   

3.
We have previously reported that antigen coupled with liposomes induced antigen-specific and IgE-selective unresponsiveness in mice. This antigen preparation was investigated for application in a novel vaccine protocol to induce minimal IgE synthesis. In this study, ovalbumin (OVA)-liposome conjugates were made using liposomes of four different lipid components, including unsaturated carrier lipid and three different saturated carrier lipids, after which the induction of anti-OVA antibody production was investigated in mice. All of the OVA-liposome conjugates induced IgE-selective unresponsiveness. The membrane fluidity of liposomes, as measured by detecting changes in the fluorescence polarization of a 1,6-diphenyl-1,3,5-hexatriene (DPH) probe located in the bilayers, was significantly higher in liposomes consisting of unsaturated carrier lipids than those of the other liposomes consisting of saturated carrier lipids. The highest titer of anti-OVA IgG was observed in mice immunized with OVA-liposomes made using liposomes consisting of unsaturated carrier lipids. In addition, among these OVA-liposomes, the one possessing the longest carbon chain induced the lowest IgG antibody production. These results suggest that the membrane fluidity of liposomes might affect the adjuvant effect of liposomes but not the induction of IgE-selective unresponsiveness in immunizations with surface-linked liposomal antigens.  相似文献   

4.
In the previous study, we investigated the induction of ovalbumin (OVA)-specific antibody production in mice by OVA-liposome conjugates made using four different lipid components, including unsaturated carrier lipid and three different saturated carrier lipids. All of the OVA-liposome conjugates tested induced IgE-selective unresponsiveness. The highest titer of anti-OVA IgG was observed in mice immunized with OVA-liposomes made using liposomes with the highest membrane fluidity, suggesting that the membrane fluidity of liposomes affects their adjuvant effect. In this study, liposomes with five different cholesterol inclusions, ranging from 0% to 43% of the total lipid, were made, and the induction of OVA-specific antibody production by OVA-liposome conjugates was compared among these liposome preparations. In contrast to the results in the previous study, liposomes that contained no cholesterol and possessed the lowest membrane fluidity demonstrated the highest adjuvant effect for the induction of IgG antibody production. In addition, when the liposomes with four different lipid compositions were used, OVA-liposome conjugates made using liposomes that did not contain cholesterol induced significantly higher levels of anti-OVA IgG antibody production than did those made using liposomes that contained cholesterol and, further, induced significant production of anti-OVA IgE. These results suggest that cholesterol inclusion in liposomes affects both adjuvanticity for IgG production and regulatory effects on IgE synthesis by the surface-coupled antigen of liposomes.  相似文献   

5.
The T-cell receptors of CD4(+) T lymphocytes recognize immunogenic peptide sequences bound within the groove of MHC class II molecules, and the peptides that bind to these molecules are known to share common structural motifs. For example, OVA(323-339), an I-A(d)-binding peptide, involves a motif of the I-A(d) peptide-binding groove. In the present study, OVA peptides of up to 26-mer were sequentially synthesized and screened, and two additional I-A(d) binding OVA peptides, OVA(20-43) and OVA(264-286), were found to stimulate CD4(+) T cells of OVA-immune BALB/c mice. OVA(20-43) involved structural motifs of the I-A(d) peptide-binding groove, while OVA(264-286) did not. The ability of these three I-A(d) binding OVA peptides to induce antigen-specific cytokine production was compared among CD4(+) T cells of mice immunized either with alum-adsorbed OVA (OVA-alum) or OVA chemically coupled to the surface of liposome (OVA-liposome). CD4(+) T cells of mice immunized with OVA-alum produced more cytokines when stimulated with OVA(264-286) than with OVA(323-339), while CD4(+) T cells of mice immunized with OVA-liposome conjugates produced more cytokines when stimulated with OVA(323-339) than with OVA(264-286). OVA(20-43) induced production of comparable levels of cytokines in mice immunized either with OVA-alum or OVA-liposome. Confocal laser scanning microscopic analysis demonstrated that chemically coupled OVA and liposomes were colocalized in APCs until OVA received processing. Three-dimensional structural analysis demonstrated that both OVA(264-286) and OVA(323-339) were present on the surface of OVA, but OVA(20-43) was not. These results suggested that the chemical coupling of OVA to liposome affected antigen processing in APCs and thus resulted in the induction of differential T-cell epitopes as compared with those induced by plain OVA.  相似文献   

6.
To examine the role of macrophage la antigens in T-lymphocyte stimulation, guinea pig macrophages were briefly treated with anti-Ia serum before or after antigen pulsing with the peptide antigen human fibrinopeptide B (hFPB). To assess their antigen-specific stimulatory capacity, the variously treated macrophages were added to culture with hFPB-immune guinea pig T cells and stimulation was determined by the incorporation of [3H]thymidine. Macrophages treated with anti-Ia serum before antigen pulsing stimulated T-cell responses equivalent to those observed with antigen-pulsed macrophages treated with normal serum. By contrast, brief anti-Ia treatment of macrophages immediately following a 2-hr antigen pulse reduced subsequent T-cell responses by 45 to 70%. Similar treatment of macrophages pulsed with antigen for only 1 hr produced only modest inhibition of T-cell responses. However, if macrophages pulsed for 1 hr with antigen were incubated several hours before brief anti-Ia serum treatment, the subsequent T-cell responses were reduced by 40 to 60%. This inhibition was specific for antiserum directed against Ia antigens of the guinea pig MHC, since brief macrophage treatment with antiserum directed against B.1 antigens, the guinea pig equivalent of murine H-2K and H-2D antigens, produced no inhibition of their T-cell stimulatory capacity. These results are discussed with respect to the formation of the immunogen presented by macrophages for T-cell recognition.  相似文献   

7.
In the present study, we investigated the effectiveness of liposomes coated with a neoglycolipid consisting of mannotriose and dipalmitoylphosphatidylcholine (Man3-DPPE) as an adjuvant for induction of mucosal immunity. Immunization of BALB/c mice with ovalbumin (OVA)-encapsulated Man3-DPPE-coated liposomes (oligomannose-coated liposomes; OMLs) by a nasal route produced high levels of OVA-specific IgG and IgA antibodies in serum of immunized mice 1 week after the last nasal immunization, whereas no significant serum antibody responses were observed in mice that received OVA in uncoated liposomes or OVA alone. Seven weeks after the last nasal immunization, nasal challenge with an excess amount of OVA in mice that had received OVA/OMLs led to an anamnestic response to the antigen that resulted in 5- to 10-fold increases of antigen-specific serum IgG and IgA antibodies. Only mice immunized nasally with OML/OVA secreted antigen-specific secretory IgA in nasal washes and produced interferon-gamma secreting cells in nasopharyngeal-associated lymphoreticular tissue. Taken together, these results show that nasal administration of OMLs induces mucosal and systemic immunity that are specific for the entrapped antigen in the liposomes. Thus, liposomes coated with synthetic neoglycolipids might be useful as adjuvants for induction of mucosal immunity.  相似文献   

8.
The adjuvant activity of liposomes and immunostimulating peptidoglycan monomer (PGM) in different formulations has been studied in mice model using ovalbumin (OVA) as an antigen. PGM is a natural compound of bacterial origin with well-defined chemical structure: GlcNAc-MurNAc-L-Ala-D-isoGln-mesoDpm(epsilonNH2)-D-Ala-D-Ala. It is a non-toxic, non-pyrogenic, and water-soluble immunostimulator. The aim of this study was to investigate the influence of different liposomal formulations of OVA, with or without PGM, on the production of total IgG, as well as of IgG1 and IgG2a subclasses of OVA-specific antibodies (as indicators of Th2 and Th1 type of immune response, respectively). CBA mice were immunized s.c. with OVA mixed with liposomes, OVA with PGM mixed with liposomes, OVA encapsulated into liposomes and OVA with PGM encapsulated into liposomes. Control groups were OVA in saline, OVA with PGM in saline, and OVA in CFA/IFA adjuvant formulation. The entrapment efficacy of OVA was monitored by HPLC method. The adjuvant activity of the mixture of OVA and empty liposomes, the mixture of OVA, PGM, and liposomes and PGM encapsulated with OVA into liposomes on production of total anti-OVA IgG was demonstrated. The mixture of PGM and liposomes exhibited additive immunostimulating effect on the production of antigen-specific IgGs. The analysis of IgG subclasses revealed that encapsulation of OVA into liposomes favors the stimulation of IgG2a antibodies, indicating the switch toward the Th1 type of immune response. When encapsulated into liposomes or mixed with liposomes, PGM induced a switch from Th1 to Th2 type of immune response. It could be concluded that appropriate formulations of antigen, PGM, and liposomes differently affect the humoral immune response and direct the switch in the type of immune response (Th1/Th2).  相似文献   

9.
Oligodeoxynucleotides containing unmethylated CpG sequences (CpG DNAs) are known as an immune adjuvant. CpG DNAs coupled with a particular antigen enabling both CpG DNA and antigen delivery to the same antigen-presenting cell have been shown to be more effective. Based on our previous finding that beta-(1-->3)-D-glucan schizophyllan (SPG) can be used as a CpG DNA carrier, here we present the synthesis of an antigen-conjugated SPG and the characterization of the conjugate. Ovalbumin (OVA, 43 kDa) was used as a model antigen, and two OVA were conjugated to one SPG molecule (M(w) = 150,000), denoted by OVA-SPG. Circular dichroism and gel electrophoresis showed that OVA-SPG could form a complex with a (dA)(40)-tailed CpG DNA at the 3' end (1,668-(dA)(40)). When OVA-SPG was added to macrophages (J774.A1), the amount of the ingested OVA-SPG was increased compared with that of OVA itself, suggesting that Dectin-1 (proinflammatory nonopsonic receptor for beta-glucans) is involved to ingest OVA-SPG. Furthermore, the complex of the conjugate and DNA was co-localized in the same vesicles, implying that OVA (antigen) and CpG DNA (adjuvant) were ingested into the cell at the same time. This paper shows that OVA-SPG can be used as a CpG DNA carrier to induce antigen-specific immune responses.  相似文献   

10.
Resident peritoneal macrophages from untreated mice develop microbicidal activity against amastigotes of the protozoan parasite Leishmania tropica (current nomenclature = Leishmania major) after in vitro exposure to LK from antigen-stimulated leukocyte culture fluids. This LK-induced macrophage microbicidal activity was completely abrogated by addition of 7:3 phosphatidylcholine: phosphatidylserine liposomes. Liposome inhibition was not due to direct toxic effects against the parasite or macrophage effector cell; factors in LK that induce macrophage microbicidal activity were not adsorbed or destroyed by liposome treatment. Other phagocytic particles, such as latex beads, had no effect on microbicidal activity. Moreover, liposome inhibition of activated macrophage effector function was relatively selective: LK-induced macrophage tumoricidal activity was not affected by liposome treatment. Liposome inhibition was dependent upon liposome dose (5 nmoles/culture) and time of addition of leishmania-infected, LK-treated macrophage cultures. Addition of liposomes through the initial 8 hr of culture completely inhibited LK-induced macrophage microbicidal activity; liposomes added after 16 hr had no effect. Similarly, microbicidal activity by macrophages activated in vivo by BCG or Corynebacterium parvum was not affected by liposome treatment. Liposome treatment also did not affect the increased resistance to infection induced in macrophages by LK. These data suggest that liposomes interfere with one or more early events in the induction of activated macrophages (macrophage-LK interaction) and not with the cytotoxic mechanism itself (parasite-macrophage interaction). These studies add to the growing body of data that implicate cell lipid in regulatory events controlling macrophage effector function.  相似文献   

11.
Effective control of the intracellular protozoan parasite Toxoplasma gondii depends on the activation of antigen-specific CD8(+) T-cells that manage acute disease and prevent recrudescence during chronic infection. T-cell activation in turn, requires presentation of parasite antigens by MHC-I molecules on the surface of antigen presenting cells. CD8(+) T-cell epitopes have been defined for several T. gondii proteins, but it is unclear how these antigens enter into the presentation pathway. We have exploited the well-characterized model antigen ovalbumin (OVA) to investigate the ability of parasite proteins to enter the MHC-I presentation pathway, by engineering recombinant expression in various organelles. CD8(+) T-cell activation was assayed using 'B3Z' reporter cells in vitro, or adoptively-transferred OVA-specific 'OT-I' CD8(+) T-cells in vivo. As expected, OVA secreted into the parasitophorous vacuole strongly stimulated antigen-presenting cells. Lower levels of activation were observed using glycophosphatidyl inositol (GPI) anchored OVA associated with (or shed from) the parasite surface. Little CD8(+) T-cell activation was detected using parasites expressing intracellular OVA in the cytosol, mitochondrion, or inner membrane complex (IMC). These results indicate that effective presentation of parasite proteins to CD8(+) T-cells is a consequence of active protein secretion by T. gondii and escape from the parasitophorous vacuole, rather than degradation of phagocytosed parasites or parasite products.  相似文献   

12.
Antigen presentation by liposomes bearing class II MHC and membrane IL-1   总被引:1,自引:0,他引:1  
Liposomes containing membrane IL-1, Iak, and the antigen conalbumin were evaluated as "synthetic antigen presenting cells." The role of these three molecules in macrophage-T cell interaction was studied by testing their ability to induce the proliferation of a T-cell clone specific to conalbumin (the D10 cell line) or immune spleen cells sensitized three times in vivo with conalbumin. In the latter case, splenic macrophages were eliminated by adherence and a lysomotropic agent. The antigen conalbumin was presented on the surface of the liposomes as native undigested protein. When the liposomes presented native conalbumin, Iak, and membrane IL-1, significant proliferation occurred, but if the liposomes lacked membrane IL-1, the proliferation of the T-cell clone and the spleen cells reached only about 60 percent of the previous signal. Native conalbumin and class II antigen alone were required for T-cell activation, while membrane IL-1 only amplified the response. When the liposomes were made with only Iak and membrane IL-1, lacking conalbumin, there was no proliferation of antigen-specific target cells. These results indicated that in this synthetic system, membrane IL-1 increases the magnitude of the response but is not essential for the proliferative response of antigen-specific T cells.  相似文献   

13.
Dimethyldioctadecylammonium bromide (DDA) produced marked enhancement of both cellular and humoral immune responses to SRBC when administered to mice intraperitoneally, or of cellular immunity when given subcutaneously. Stimulated cellular responses were seen as increased footpad swelling as a measure of delayed hypersensitivity and increased antigen-induced blastogenesis. Elevation of humoral response was reflected in increased numbers of splenic plaque-forming cells (PFC) and in circulating anti-SRBC antibody. Adjuvancy did not depend on addition of the lipid of DDA to antigen, as both humoral and cellular responses were enhanced whether DDA and SRBC were admixed or injected separately 4 hr apart intraperitoneally. DDA also enhanced the PFC response to the T-cell independent antigen TNP-LPS. The DDA effects are accompanied by macrophage activation, which may mediate at least in part the observed responses. DDA-activated macrophages exhibit fast spreading, are highly phagocytic, and elaborate significantly greater amounts of thymocyte mitogenic factor(s) than do normal resident peritoneal macrophages. This activation may effect the stimulation of antigen-specific primary lymphocyte responses by adjuvant and expansion of memory-cell populations which lead to the observed enhancement of secondary responses.  相似文献   

14.
Intravenous administration of APC such as splenocytes loaded with a soluble protein Ag has been shown to prime for an Ag-specific CTL response. It is thought that the APC directly presents loaded Ag in a MHC-restricted manner. However, it is demonstrated in this study that allogeneic splenocytes, MHC-free RBC, and even synthetic lipid vesicles (liposomes) after loading with OVA can elicit an OVA-specific and MHC-restricted CTL response. Biodistribution studies of these Ag-associated vehicles showed that the liver, spleen, and lung were the major organs responsible to scavenge these carriers, suggesting that the monocyte-macrophage system was involved in the Ag presentation for CTL. Depletion of macrophages by a specific macrophage killer, Cl2MDP, containing liposomes, abolished the CTL induction by immunization with OVA Ag carried by these vehicles except the induction by syngeneic splenocytes. Thus, the syngeneic splenocytes present Ag directly to the T cells, but other membranous vehicles carry the Ag to the host APC including macrophages, which then present it to the T cells. These results indicate that formulation of an Ag in membranous/colloidal vehicles may be a way to prime for a CTL response.  相似文献   

15.
The present study investigated the potency of the mannosylated cationic liposomes (Man liposomes) that we have developed in novel DNA vaccine carrier. Ovalbumin (OVA) was selected as a model antigen for vaccination; accordingly, OVA-encoding pDNA (pCMV-OVA) was constructed to evaluate DNA vaccination. The potency of the Man liposome/pCMV-OVA complex was compared with naked pCMV-OVA and that complexed with DC-Chol liposomes. In cultured mouse peritoneal macrophages, MHC class I-restricted antigen presentation of the Man liposome/pCMV-OVA complex was significantly higher than that of naked pCMV-OVA and that complexed with DC-Chol liposomes. After intravenous administration, OVA mRNA expression and MHC class I-restricted antigen presentation on CD11c+ cells and inflammatory cytokines, such as TNF-alpha, IL-12, and IFN-gamma, that can enhance the Th1 response of the Man liposome/pCMV-OVA complex were higher than that of naked pCMV-OVA and that complexed with DC-Chol liposomes. Also, the spleen cells from mice immunized by intravenous administration of the Man liposome/pCMV-OVA complex showed the highest proliferation response and IFN-gamma secretion. These findings suggest that the targeted delivery of DNA vaccine by Man liposomes is a potent vaccination method for DNA vaccine therapy.  相似文献   

16.
The adjuvant activity of liposomes and immunostimulating peptidoglycan monomer (PGM) in different formulations has been studied in mice model using ovalbumin (OVA) as an antigen. PGM is a natural compound of bacterial origin with well-defined chemical structure: GlcNAc-MurNAc-l-Ala-d-isoGln-mesoDpm(εNH2)-d-Ala-d-Ala. It is a non-toxic, non-pyrogenic, and water-soluble immunostimulator. The aim of this study was to investigate the influence of different liposomal formulations of OVA, with or without PGM, on the production of total IgG, as well as of IgG1 and IgG2a subclasses of OVA-specific antibodies (as indicators of Th2 and Th1 type of immune response, respectively). CBA mice were immunized s.c. with OVA mixed with liposomes, OVA with PGM mixed with liposomes, OVA encapsulated into liposomes and OVA with PGM encapsulated into liposomes. Control groups were OVA in saline, OVA with PGM in saline, and OVA in CFA/IFA adjuvant formulation. The entrapment efficacy of OVA was monitored by HPLC method. The adjuvant activity of the mixture of OVA and empty liposomes, the mixture of OVA, PGM, and liposomes and PGM encapsulated with OVA into liposomes on production of total anti-OVA IgG was demonstrated. The mixture of PGM and liposomes exhibited additive immunostimulating effect on the production of antigen-specific IgGs. The analysis of IgG subclasses revealed that encapsulation of OVA into liposomes favors the stimulation of IgG2a antibodies, indicating the switch toward the Th1 type of immune response. When encapsulated into liposomes or mixed with liposomes, PGM induced a switch from Th1 to Th2 type of immune response. It could be concluded that appropriate formulations of antigen, PGM, and liposomes differently affect the humoral immune response and direct the switch in the type of immune response (Th1/Th2).  相似文献   

17.
Inactivated Bacillus firmus (BF), G+ nonpathogenic bacterium of the external environment, was coupled to ovalbumin (OVA) and used in immunization experiments as antigen carrier. Balb/c mice were immunized thrice intra-tracheally and intra-nasally with conjugates of OVA and BF. Surprisingly, administration of OVA-BF conjugates inhibited anti-OVA IgG response in both sera and mucosal secretions if compared to an exposure to OVA alone. The suppression of antigen-specific antibody production was accompanied by promotion of TH1 phenotype.  相似文献   

18.
For optimal stimulation of T cells, protein-based vaccines must deliver protein antigens to antigen-presenting cells while simultaneously providing immunostimulatory signals. Listeriolysin O (LLO)-containing liposomes have been utilized to efficiently deliver protein antigens to the cytosolic pathway for antigen processing and major histocompatibility complex class I-dependent presentation while codelivering immunostimulatory CpG-oligodeoxyribonuceotides (ODNs). In this report, we describe the synthesis of lipid-CpG-ODN conjugates utilizing maleimide-phosphatidylethanolamine (PE) lipids and 5'-sulfhdryl-containing CpG-ODNs as a method for facile incorporation of CpG-ODNs in liposomal vaccine carriers, an alternative to co-encapsulation inside liposomes and as a means to enhance delivery of CpG-ODNs to their major receptor, Toll-like receptor 9 (TLR9), in the endosome. The characterization and biological evaluation of the vaccine delivery system made of liposomes, which contain the lipid-CpG-ODN conjugates inserted in the liposomal membrane, is described. We demonstrate in vitro in bone marrow derived macrophages that the lipid-CpG-ODN conjugates incorporated onto the liposome bilayers interact with their receptor TLR9 as readily as liposome-encapsulated ODNs and exert their immunostimulatory capabilities. The liposomal vaccine delivery systems were evaluated in mice using ovalbumin (OVA) as a model antigen, and the results indicate equally robust OVA-specific cytotoxic T lymphocyte responses and similar Th1 immune skewing capabilities between liposomes containing lipid-conjugated or encapsulated CpG-ODNs. Overall, this work indicates that conjugating PE lipids and CpG-ODNs results in an efficient method that allows facile incorporation of CpG-ODNs into a liposome-based delivery platform while retaining the immune-stimulating capabilities of CpG-ODNs.  相似文献   

19.
Mouse splenic macrophage progenitors differ in their ability to give rise to cloned progeny that constitutively present complex protein antigens to T-cell hybridomas. To determine if the constitutive presentation of diverse antigens is restricted to cells derived from the same subpopulation of progenitors, we expanded macrophage clones into multiple subcultures and compared them for the ability to present different antigens to their respective antigen-specific T-cell hybridomas. Only subcultures derived from the same minority fraction of splenic macrophage progenitors were capable of constitutively presenting the antigens, and the activity of these subcultures was unaffected by the addition of recombinant murine IFN-gamma. This suggests that a specialized sub-population of constitutive antigen-presenting macrophages exists in the spleens of mice.  相似文献   

20.
Cyclosporine inhibits macrophage-mediated antigen presentation   总被引:6,自引:0,他引:6  
The influence of cyclosporine on antigen-specific, macrophage-dependent T cell activation was analyzed in vitro. Murine T cell activation by antigens derived from Listeria monocytogenes was monitored by the production of interleukin 2. Pretreatment (2 hr, 37 degrees C) of macrophages with cyclosporine resulted in a cell population with a markedly diminished capacity to support the activation of T lymphocytes. When cyclosporine-pretreated macrophages were added to cultures of untreated T cells and antigen, the dose of cyclosporine that produced 50% inhibition (ID50) was 1.5 micrograms/ml, and if antigen was present during the drug pretreatment, the ID50 was 0.6 micrograms/ml. Pretreatment of T cells also inhibited their subsequent activation by antigen and untreated macrophages, but a higher dose of cyclosporine was required to produce similar inhibition (ID50 = 4.4 micrograms/ml). Additional experiments focused on the mechanism of inhibition of antigen presentation when macrophages were pretreated with the drug. The addition of interleukin 1 or indomethacin to the cultures did not alter the inhibitory effect of cyclosporine. Under conditions that produced greater than 90% inhibition of antigen presentation, macrophage surface Ia expression was not altered, and the uptake and catabolism of radiolabeled antigen remained normal. Thus, cyclosporine had profound effects on antigen presentation that appear to be unrelated to decreases in interleukin 1 production, increases in prostaglandin production, decreases in Ia expression, or changes in antigen uptake and catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号