首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In many systems, events participating in cell division are controlled by intracellular pH (pHi). In Xenopus eggs, fertilization is accompanied by an increase in pHi which occurs concomitantly with an increase in protein synthesis and a reinitiation of DNA synthesis, leading the embryo to cell division. In this paper, we have shown that increasing pHi of fertilized eggs from 7.8 to 8.2 by using weak bases produced an arrest in embryonic development. Such a change in pHi was accompanied by a severe inhibition of both protein and DNA syntheses. In order to discriminate between a direct effect of pHi and a pH-independent effect of weak bases on these biosyntheses, the situation was studied in vitro. For this purpose, cytoplasmic extracts were used in which weak base addition did not produce any change in pH. Under these conditions, protein synthesis was not inhibited, suggesting that pH is probably one of the events implicated in the regulation of protein synthesis. On the other hand, DNA synthesis was inhibited by weak bases in vitro, without any change in pH intervening.  相似文献   

2.
Metabolic activation following egg fertilization corresponds to an increase in protein synthesis and the initiation of DNA synthesis, which lead to cell division and development of the embryo. Since in several biological systems protein synthesis is regulated by intracellular pH (pHi), we have decided to investigate the situation during Xenopus egg activation. We confirmed that egg activation is accompanied by a pHi rise of 0.3 pH unit. Measurements of the rates of protein synthesis is unactivated and activated eggs, after microinjection of 3H-leucine, demonstrated that activation was followed by a 2.5-fold increase. Treatment of unactivated eggs with weak bases also increased pHi, but did not result in an increase in the rate of protein synthesis. Moreover, in vitro translation in cytoplasmic extracts was found to be pH-independent, at least between 6.8 and 8.2.  相似文献   

3.
An in vitro cultured rat perirenal preadipocyte (PA) was established as a model system to investigate the role of the intracellular pH (pHi) and of the Na~ /H~ exchanger during PA proliferation and differentiation, pH sensitive probe, 2' ,7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF), was employed to measure the pHi of PA and to determine the Na~ /H~ exchange activity. The results showed that there was Na~ /H~ exchange activity in the plasma membrane of PA, FCS stimulated DNA synthesis measured by ~3H-TdR incorporation, and the activation of Na~ /H~ exchanger resulted in phi increase (nearly 0.2 pH unit) within 2 min. Ethyl-isopropyl-amiloride (EIPA), a specific Na~ /H~ exchange inhibitor, inhibited Na~ /H~ exchange activity and DNA synthesis. In the absence of serum insulin did not stimulate DNA synthesis but did induce PA differentiation characterized by the appearance of adiposome in the cell and the enhancement of glycerol-3-phosphate dehydrogenase (G_3PDHase) activity. Meantime, insu  相似文献   

4.
F Dubé  T Schmidt  C H Johnson  D Epel 《Cell》1985,40(3):657-666
The intracellular pH (pHi) rises 0.3-0.5 units after fertilization of sea urchin eggs, and this and previous work show this pHi change is necessary for initiating the developmental processes leading to cell division. The experiments described here reveal that while the elevated pHi is permanently required for a normal early development, lowering pHi of embryos after fertilization affects different processes to different extents. Protein synthesis gradually becomes less sensitive to pHi. Karyokinesis proceeds to completion under a low pHi, but is retarded, while cytokinesis is always impaired. These results indicate a hierarchy of requirements for high pHi during early development of sea urchin embryos, with protein synthesis, karyokinesis, and cytokinesis showing, respectively, increasing requirements for an elevated pHi.  相似文献   

5.
The regulation of the microtubule-mediated motions within eggs during fertilization was investigated in relation to the shift in intracellular pH (pHi) that occurs during the ionic sequence of egg activation in the sea urchins Lytechinus variegatus and Arbacia punctulata. Microtubule assembly during formation of the sperm aster and mitotic apparatus was detected by anti-tubulin immunofluorescence microscopy, and the microtubule-mediated migrations of the sperm and egg nuclei were studied with time-lapse video differential interference contrast microscopy. Manipulations of intracellular pH were verified by fluorimetric analyses of cytoplasmic fluorescein incorporated as fluorescein diacetate. The ionic sequence of egg activation was manipulated i) to block the pHi shift at fertilization or reduce the pHi of fertilized eggs to unfertilized values, ii) to elevate artificially the pHi of unfertilized eggs to fertilized values, and iii) to elevate artificially or permit the normal pHi shift in fertilized eggs in which the pHi shift at fertilization was previously prevented. Fertilized eggs in which the pHi shift was suppressed did not assemble microtubules or undergo the normal microtubule-mediated motions. In fertilized eggs in which the pHi was reduced to unfertilized levels after the assembly of the sperm aster, no motions were detected. If the intracellular pH was later permitted to rise, normal motile events leading to division and development occurred, delayed by the time during which the pH elevation was blocked. Microtubule-mediated events occurred in eggs in which the intracellular pH was elevated, even in unfertilized eggs in which the pH was artificially increased. These results indicate that the formation and normal functioning of the egg microtubules is initiated, either directly or indirectly, by the shift in intracellular pH that occurs during fertilization.  相似文献   

6.
Weak bases inhibit cleavage and embryogenesis in amphibians and echinoderms   总被引:1,自引:0,他引:1  
The action of weak bases was studied on the early embryonic development of a number of species. Gastrulation was disrupted in the frog, Xenopus laevis, the newt, Pleurodeles watlii, the sea urchins, Paracentrotus lividus and Sphaerechinus granularis and the starfish, Asterias rubens. This required only submillimolar amounts of either NH+4 (pH 9.0) or procaine (pH 8.2). At higher concentrations even early cell division was inhibited in all the species with furrow regression particularly noticeable in Xenopus eggs. A similar action of the weak bases on early development, the lack of any action at lower extracellular pH, and the counteracting action of NH+4 on acidity-induced disruption of sea urchin development, all implicate an elevation of intracellular pH. However, a more direct intracellular action of the weak bases cannot be ruled out.  相似文献   

7.
The relation between rate of protein synthesis and intracellular pH (pHi) was investigated in the eggs of the sea urchin Strongylocentrotus purpuratus. Increasing external pH (pHo) resulted in raising pHi of eggs and also in increased rate of protein synthesis. Similarly, at constant pHo, adding various concentrations of NH4Cl to eggs caused graded increases of both pHi and protein synthesis. Using various concentrations of NH4Cl at a low pHo and incubating eggs at high pHo, we compared protein synthesis under similar pHi conditions and this revealed that at least half the increased protein synthesis stimulated by NH4Cl is independent of induced rise of pHi, as also seems to be chromosome condensation which was never observed in eggs incubated at high pHoS. The additional pH-independent event triggered by NH4Cl does not appear related to elevated free Ca2+, since protein synthesis and chromosome condensation do not require external Ca2+ and no increases of free Ca2+ sufficient to activate the Ca2+-calmodulin-mediated enzyme NAD kinase occurred. Monensin disrupts intravesicular pH gradients but does not stimulate protein synthesis, indicating that this local effect, also promoted by NH4Cl, is not involved in ammonia-induced increase of protein synthesis. Using two other amines which have low pKa values, benzocaine and tricaine, we observed 2-fold increases in protein synthesis rates, even though pHi was lowered. While the exact nature of the pH-independent event(s) triggered by NH4Cl, and possibly by other amines, remains unidentified, its possible involvement in normal mitosis is stressed.  相似文献   

8.
Incubating unfertilized sea urchin eggs in weak bases activates nuclear centering, DNA synthesis, and chromosome cycles. These effects were initially attributed to raising the intracellular pH (pH(i)), but later experiments indicated that these weak bases also lead to increases in reduced pyridine nucleotides. These findings raised the question whether the activation of the nucleus was due to increased pH(i) or to increased NAD(P)H or possibly other effects. This report attempts to clarify how ammonia activates eggs by independently altering NADPH and pH(i). To increase the pH(i), unfertilized eggs were injected with zwitterionic buffers. This stimulated pronuclear centering, DNA synthesis, and nuclear envelope breakdown; there appeared to be a threshold corresponding to the fertilized pH(i). However, like incubation in ammonia, injection of base also increased NAD(P)H. The NAD(P)H rise caused by directly raising the pH(i) occurred in the presence of intracellular calcium chelators, indicating that calcium is not required. Increasing NAD(P)H alone did not activate nuclear centering, DNA synthesis, or nuclear envelope breakdown. Although these experiments cannot eliminate a role for the NADPH increase in initiating events leading to nuclear centering and entry into mitosis, they provide additional and strong evidence that increasing the pH(i) may be a primary signal.  相似文献   

9.
This report describes the effects of 10 mM procaine on microtubule assembly and on DNA synthesis, as followed by [3H]colchicine binding assays and [3H]thymidine incorporation respectively, in fertilized Paracentrotus lividus eggs. In the absence of microtubule assembly inhibitors, about 25% of the total egg tubulin is submitted to two cycles of polymerization prior to the first cell division, this polymerization process precedes DNA synthesis. If the zygotes are treated with 10 mM procaine in the course of the cell cycle, tubulin polymerization is inhibited or microtubules are disassembled. DNA synthesis is inhibited when procaine treatment is performed 10 min, before the initiation of the S-period. However, when the drug is applied in the course of this synthetic period, the process is normally accomplished, but the next S-period becomes inhibited. Moreover, procaine treatment increases the cytoplasmic pH of the fertilized eggs by about 0.6 to 0.8 pH units. This pH increase precedes microtubule disassembly and inhibition of DNA synthesis. Washing out the drug induces a decrease of the intracellular pH which returns to about the same value as that of the fertilized egg controls. This pH change is then followed by the reinitiation of microtubule assembly, DNA synthesis and cell division. Our results show that the inhibition of both tubulin polymerization and DNA synthesis in fertilized eggs treated with 10 mM procaine, appears to be related to the drug-induced increase in cytoplasmic pH.  相似文献   

10.
Mitogen-induced intracellular alkalinization mediated by activation of a Na+/H+ antiporter is a common feature of eukaryotic cells stimulated to divide. A Chinese hamster fibroblast mutant (PS120) lacking Na+/H+ antiport activity (Pouysségur et al., Proc natl acad sci US 81 (1984) 4833) [42] possesses an intracellular pH (pHi) 0.2-0.3 units lower than the wild type (CCL39) and requires a more alkaline pHout (pHo) for growth. Here, we show that serum-stimulated ribosomal protein S6 phosphorylation, protein synthesis activation and DNA synthesis re-initiation are pH-regulated events that display a similar threshold pHo value (6.60) in CCL39 cells. pH-Dependencies for initiation of all three events are shifted toward higher pHo values in the mutant PS120, indicating that growth factor-induced alkalinization has a permissive effect on the pleiotypic response. However, cytoplasmic alkalinization per se is insufficient to trigger S6 phosphorylation, polysome formation, and subsequent DNA synthesis. Transient exposure to a non-permissive pHo (6.5) inhibits both the rate of leucine incorporation into proteins and the progression through the G1 phase of the cell cycle. In contrast, cells committed to DNA synthesis are unaltered by the acidic pHo. These observations suggest that pHi by controlling the rate of protein synthesis play a determinant role in the control of cell division.  相似文献   

11.
At fertilization, the sea urchin egg undergoes an internal pH (pHi) increase mediated by a Na+ -H+ exchanger. We used antibodies against the mammalian antiporters NHE1 and NHE3 to characterize this exchanger. In unfertilized eggs, only anti-NHE3 cross-reacted specifically with a protein of 81-kDa, which localized to the plasma membrane and cortical granules. Cytochalasin D, C3 exotoxin (blocker of RhoGTPase function), and Y-27632 (inhibitor of Rho-kinase) prevented the pHi change in fertilized eggs. These inhibitors blocked the first cleavage division of the embryo, but not the cortical granule exocytosis. Thus, the sea urchin egg has an epithelial NHE3-like Na+ -H+ exchanger which can be responsible for the pHi change at fertilization. Determinants of this pHi change can be: (i) the increase of exchangers in the plasma membrane (via cortical granule exocytosis) and (ii) Rho, Rho-kinase, and optimal organization of the actin cytoskeleton as regulators, among others, of the intrinsic activity of the exchanger.  相似文献   

12.
In Xenopus embryos, the successive and rapid cell divisions that follow fertilization are accompanied by periodic oscillations of intracellular pH (pHi). Cycling of pHi occurs in phase with several other oscillatory activities, namely nuclear divisions, M phase-promoting factor (MPF) activity, and surface contraction waves (SCWs). We report that treatments that abolish cycling of MPF activity and the SCWs also suppress the pHi oscillations, whereas those that block cell division without affecting neither MPF activity nor the SCWs do not suppress the pHi oscillations. Experiments on enucleated oocytes, matured in vitro and activated, demonstrated that the activity governing the rhythmicity of the pHi oscillations resided in the cytoplasm of the oocyte. In this respect, the activity responsible for the pHi oscillations was different from that which drives the SCWs, which necessitated the presence of the oocyte germinal vesicle (Ohsumi et al., 1986), but more closely resembled MPF activity that did not require the presence of the oocyte germinal vesicle (Dabauvalle et al., 1988). In mature eggs enucleated at the time of egg activation, the pHi oscillations were similar to those in control nucleated eggs, whereas the period between two peaks of SCWs was 35-60 min vs. 20-35 min in nucleated control eggs. Previous studies had shown that the periodicity of SCWs was larger in anucleate egg fragments than in their nucleate counterparts (Sakai and Kubota, 1981), the difference being on the order of 6-15 min (Shinagawa, 1983). However, in these previous studies, enucleation was performed 30-50 min after fertilization. Our results clearly demonstrate that the periodicity of the SCWs is lengthened when the interval between egg activation and enucleation is shortened, thereby providing an easier way to assess the nuclear dependency of the SCWs. Finally, the various possibilities concerning the role of pHi cycling during cell division are discussed.  相似文献   

13.
The mechanism of the activation of intracellular proteasomes at fertilization was measured in living sand dollar eggs using the membrane-impermeant fluorogenic substrate, succinyl-Phe-Leu-Arg-coumarylamido-4-methanesulfonic acid. When the substrate was microinjected into unfertilized eggs, the initial velocity of hydrolysis of the substrate (V0) was low. V0 measured 5 to 10 min after fertilization was five to nine times the prefertilization level and remained high throughout the first cell cycle. Hydrolysis of the substrate was inhibited by clasto-lactacystin beta-lactone, a specific inhibitor of the proteasome. There has been in vitro evidence that calcium may be involved in regulation of proteasome activity to either inhibit the increase in peptidase activity associated with PA 28 binding to the 20S proteasome or stimulate activity of the PA 700-proteasome complex. Since both intracellular free Ca2+ concentration ([Ca2+]i) and intracellular pH (pHi) increase after fertilization, hydrolysis of the proteasome substrate was measured under conditions in which [Ca2+]i and pHi were varied independently during activation. When the pHi of unfertilized eggs was elevated by exposure to 15 mM ammonium chloride in pH 9 seawater, V0 increased to a level comparable to that measured after fertilization. In contrast, [Ca2+]i elevation without pHi change, induced by calcium ionophore in sodium-free seawater, had no effect on V0 in the unfertilized egg. Moreover, when unfertilized eggs were microinjected with buffers modulating pHi, V0 increased in a pH-dependent manner. These results indicate that the pHi rise at fertilization is the necessary prerequisite for activation of the proteasome, an essential component in the regulation of the cell cycle.  相似文献   

14.
Selective inhibition of protein synthesis in Streptococcus faecalis (ATCC 9790) was accompanied by a rapid and severe inhibition of cell division and a reduction of enlargement of cellular surface area. Continued synthesis of cell wall polymers resulted in rapid thickening of the wall to an extent not seen in exponential-phase populations. Thus, the normal direction of wall growth was changed from a preferential feeding out of new wall surface to that of thickening existing cell surfaces. However, the overall manner in which the wall thickened, from nascent septa toward polar regions, was the same in both exponential-phase and inhibited populations. In contrast, selective inhibition of deoxyribonucleic acid (DNA) synthesis using mitomycin C was accompanied by an increase in cellular surface area and by division of about 80% of the cells in random populations. Little or no wall thickening was observed until the synthesis of macromolecules other than DNA was impaired and further cell division ceased. Concomitant inhibition of both DNA and protein synthesis inhibited cell division but permitted an increase in average cell volume. In such doubly inhibited cells, walls thickened less than in cells inhibited for protein synthesis only. On the basis of the results obtained, a model for cell surface enlargement and cell division is presented. The model proposes that: (i) each wall enlargement site is influenced by an individual chromosome replication cycle; (ii) during chromosome replication peripheral surface enlargement would be favored over thickening (or septation); (iii) a signal associated with chromosome termination would favor thickening (and septation) at the expense of surface enlargement; and (iv) a factor or signal related to protein synthesis would be required for one or more of the near terminal stages of cell division or cell separation, or both.  相似文献   

15.
The aim of this work was to determine the potential relationships between rises in intracellular pH (pHi) and intracellular free calcium activity (Cai2+) during cell activation in Xenopus eggs. To do this, we used two weak bases, NH4Cl and procaine, and a weak acid, CO2, and measured Cai2+ variations in response to these imposed pHi variations. NH4Cl and procaine increased Cai2+ in both unactivated and activated eggs. Procaine was found to alkalinize the egg cytoplasm, whereas the other weak base, NH4Cl, acidified the egg cytoplasm. On the other hand, CO2 was found to acidify the cytoplasm and to substantially decrease Cai2+, also in unactivated and activated eggs. In addition, CO2 triggered an increase in the conductance of the plasma membrane to Cl- ions, similarly to what had been found previously with weak bases (Charbonneau, M. (1989) Cell Differ. Develop. 26, 39-52). These Cl- channels, similarly to the sperm-triggered Cl- channels during the fertilization potential, are supposed to be Ca2(+)-sensitive. Therefore, the changes in Ca2+ observed in response to CO2 do not seem to be responsible for the opening of these Cl- channels, which would rather be triggered by an increase in Cai2+ localized near the plasma membrane. We conclude therefore that weak acids and bases represent appropriate tools for studying cytosolic Ca2+ homeostasis, but not for dissecting the complex pathways involved in signal transduction.  相似文献   

16.
An increase in intracellular pH (pHi) and ribosomal protein S6 phosphorylation during Xenopus oocyte maturation has been reported by several laboratories. In this paper, the question of whether the pHi increase is necessary to induce S6 phosphorylation, an increase in protein synthesis, or germinal vesicle breakdown (GVBD) was assessed using sodium-free medium and the putative Na/H exchange blocker amiloride. Sodium-free medium decreased basal pHi by 0.3 unit and prevented increases in pHi in response to both insulin and progesterone, but S6 phosphorylation occurred normally with both hormones. GVBD occurred normally in sodium-free medium in response to progesterone, but the effect of insulin was reduced by 60%. In sodium-containing medium, amiloride inhibited GVBD and prevented insulin or progesterone-induced increases in pHi but the hormone-induced increase in S6 phosphorylation was unaffected. In the absence of sodium, amiloride inhibited GVBD but did not affect pHi, indicating that amiloride inhibits GVBD by a pHi-independent mechanism. Both progesterone and insulin increased protein synthesis in oocytes by 35%, and amiloride inhibited basal protein synthesis but not the increase with hormone. In the presence of cholera toxin, protein synthesis increases with insulin were inhibited but increased S6 phosphorylation was unaffected. Priming of animals with pregnant mare's serum gonadotropin prior to oocyte isolation reduced the time required for progesterone-induced GVBD, and increased the synchrony of GVBD of the population. Priming also increased oocyte basal pHi and basal protein synthesis as well as the magnitude of the increase in protein synthesis with progesterone but had no effect on S6 phosphorylation. The results indicate that in Xenopus oocytes increased pHi is not necessary for increased S6 phosphorylation, increased protein synthesis, or GVBD in response to insulin or progesterone nor is increased S6 phosphorylation sufficient for GVBD or increased protein synthesis.  相似文献   

17.
Both insulin and progesterone are capable of stimulating germinal vesicle breakdown (GVBD) of large, Stage VI oocytes of Xenopus laevis. Numerous studies have shown an increase in intracellular pH (pHi) and ribosomal protein S6 phosphorylation prior to GVBD in oocytes treated with progesterone. In this study the effect of insulin and progesterone on pHi and S6 phosphorylation was compared. Both hormones increased pHi and S6 phosphorylation to similar levels and the time course of pHi change was the same for both hormones. Half-maximal effects of insulin were observed at 7 X 10(-8) M concentrations. In the presence of 1 nM cholera toxin, the ability of progesterone to induce these two responses was inhibited while the action of insulin was unaffected. However, GVBD induced by either hormone was blocked by cholera toxin. In small, Stage IV oocytes that do not undergo GVBD in response to either progesterone or insulin, a partial increase in pHi without S6 phosphorylation occurred in response to progesterone but both events occurred in response to insulin. These results suggest that the inability of Stage IV oocytes to undergo GVBD in response to hormone is not due to a failure to increase pHi or phosphorylate S6. The results in this paper also indicate that these events are regulated differently by insulin and progesterone in Xenopus oocytes.  相似文献   

18.
Intracellular pH (pH1) of sea urchin eggs and embryos was determined using DMO (5,5-dimethyl-2,4-oxazolidinedione). By this method, the pH1 of Lytechinus pictus eggs increased after fertilization from 6.86 to 7.27, and this higher pHi was maintained thereafter, as has been previously observed with pH microelectrodes. The same general result was obtained with the eggs of Strongylocentrotus purpuratus, in contrast to previous estimates of the pH of egg homogenates from this species, which had indicated a rise and then fall of pHi after fertilization. pHi did not significantly change during early cell divisions. Studies of treatments that alter pHi confirmed that ammonia alkalizes and acetate acidifies the cells. The regulation of pHi by embryos in the acidic seawater is impaired if sodium is absent, whereas unfertilized eggs can regulate pHi in acidic, sodium-free seawater.  相似文献   

19.
Cyclooxygenase-2 (COX-2) over-expression is critically involved in tumor formation. Intracellular pH (pHi) has been shown to be alkaline in cancer cells, and to be an important trigger for cell proliferation. This study therefore analyzed the relationship between pHi and COX-2 expression. HRT-18 and Caco-2 cells cultured in medium with bicarbonate maintained a pHi of approximately 7.6, which is higher than that of non-neoplastic cells. Cells grown in bicarbonate-free medium with a pH at 6.8 showed a reduction in pHi to approximately 7.0. Importantly, reduction of pHi resulted in a complete inhibition of COX-2 mRNA and protein expression. When cells were grown in bicarbonate-supplemented medium at pH 6.8, pHi maintained at approximately 7.6 and COX-2 expression was not inhibited. Additionally, analysis utilizing protein synthesis inhibitor cycloheximide demonstrated that pHi mediated inhibition of COX-2 mRNA expression requires de novo protein synthesis of regulatory protein(s). These data strongly suggest that an alkaline pHi is an important trigger for constitutive COX-2 expression. Defining pHi-mediated mechanisms that govern the constitutive COX-2 expression may help in developing new strategies to block COX-2 over-expression in cancer cells.  相似文献   

20.
Previous work on Xenopus laevis suggests a temporal coincidence between inactivation of the M-phase promoting factor (MPF) and intracellular pH (pHi) increase during egg activation. In addition, we recently showed that during the early cell cycle of Xenopus eggs, MPF activity cycling and pHi oscillations were temporally and functionally related. In the present work, using eggs of another amphibian, Pleurodeles waltlii, which has a natural cell cycle considerably longer than that of Xenopus laevis, we show a temporal coincidence between MPF activity and pHi changes, both at the time of egg activation and at each of the following cell cycles. Egg activation-induced pHi changes in Pleurodeles did not involve classical plasma membrane ion exchangers, and were not due to the activation of a H+ conductance. On the other hand, the pHi oscillations intervening at each cell cycle were suppressed by inhibitors of protein synthesis or phosphorylation, as were their counterparts in Xenopus eggs. We propose that physiological pHi changes in Pleurodeles and Xenopus eggs might have a metabolic origin, in direct relation with the cascade of phosphorylations-dephosphorylations of proteins implicated in the control of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号