首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The hydraulic conductivity in the presence of dimethyl sulfoxide Me(2)SO (L(p)(Me(2)SO)), Me(2)SO (P(Me(2)SO)) permeability and reflection coefficient (sigma) of immature (germinal vesicle; GV) and mature (metaphase II; MII) rat oocytes were determined at various temperatures. A temperature controlled micropipette perfusion technique was used to conduct experiments at five different temperatures (30, 20, 10, 4, and -3 degrees C). Kedem and Katchalsky membrane transport theory was used to describe the cell volume kinetics. The cell volumetric changes of oocytes were calculated from the measurement of two oocyte diameters, assuming a spherical shape. The activation energies (E(a)) of L(p)(Me(2)SO) and P(Me(2)SO) were calculated using the Arrhenius equation. Activation energies of L(p)(Me(2)SO) for GV and MII oocytes were 34.30 Kcal/mol and 16.29 Kcal/mol, respectively; while the corresponding E(a)s of P(Me(2)SO) were 19.87 Kcal/mol and 21.85 Kcal/mol, respectively. These permeability parameters were then used to calculate cell water loss in rat oocytes during cooling at subzero temperatures. Based on these values, the predicted optimal cooling rate required to maintain extra- and intracellular water in near equilibrium for rat GV stage oocytes was found to be between 0.05 degrees C/min and 0. 025; while for rat MII oocytes, the corresponding cooling rate was 1 degrees C/min. These data suggest that standard cooling rates used for mouse oocytes (e.g., 0.5-1 degrees C/min) can also be employed to cryopreserve rat MII oocytes. However, the corresponding cooling rate required to avoid damage must be significantly slower for the GV stage rat oocyte. J. Exp. Zool. 286:523-533, 2000.  相似文献   

2.
Membrane water permeability values were measured in individual fresh human pre-ovulatory oocytes using real time microscopy in a microscope diffusion chamber. The cells were exposed to anisosmotic conditions, their volume responses measured, and from these data the Lp values were computed employing the Kedem-Katchalsky analyses of irreversible thermodynamics. Lp values were measured at four temperatures for each oocyte between 37 degrees C and 10 degrees C, and the temperature-related Arrhenius activation energy (Ea) calculated. It was apparent that individual oocytes exhibited a wide range of Lp values; at 37 degrees C Lp values ranged between 0.33 and 1.80 microns/atm/min. However, each oocyte exhibited the expected inverse linear correlation between Lp and temperature, with high linear correlations (R2 values between 0.73 and 0.96). A mean value for Ea of 8.61 +/- 5.11 Kcal/mol was computed. It is apparent that pre-ovulatory human oocytes express a range of biological diversity in terms of membrane water transport, and this fact needs to be considered when attempting to formulate cryopreservation protocols for storage of these oocytes.  相似文献   

3.
The volumetric response of oocytes during rapid alterations of the extracellular osmotic environment were recorded using video microscopy. From these observations, the kinetics of water loss for human and mouse oocytes were determined over the temperature range 37 to 10 degrees C, including 37, 30, 20, and 10 degrees C. The changes in diameter of oocytes were measured over a 5-min period and a computer model was used to derive values for membrane water permeability (Lp) and inactive volume (Vb) and to compare the experimental data to the predicted values. The results for the mouse oocyte Lp were comparable to values determined by other methods. However the human data, for both failed-to-fertilize and fresh oocytes, have a wide range of values with large standard deviations. The Lp values at the various temperatures were used to calculate the Arrhenius activation energy (Ea). An Ea value of 9.48 kcal/mol was found for the fresh mouse oocyte, whereas the activation energy for human oocytes was extremely low, 3.73 kcal/mol for fresh oocytes and 1.93 kcal/mol for failed-to-fertilize oocytes.  相似文献   

4.
Studies on Ca2+-channel distribution in maturation arrested mouse oocyte   总被引:1,自引:0,他引:1  
The present study was carried out to identify the existence of voltage-dependent Ca2+-channels (P/Q-, N-, and L-type) and their distributional differences in germinal vesicle (GV) and GV breakdown (GVBD)-arrested mouse oocytes which includes GVBD to telophase I of meiosis I and matured oocytes (MII, metaphase of meiosis II) by using the immunocytochemical method and a confocal laser scanning microscope. (1) Comparison between follicular oocytes (GV) and GV-arrested oocytes after 17 hr of in vitro culture. In follicular oocytes, P/Q-, N-, L (anti-alpha1C anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, GV-arrested oocytes, after in vitro culture for 17 hr, showed no presence of Ca2+-channels in most oocytes. (2) Comparison between GVBD oocytes after culture in vitro for 3 hr and GVBD-arrested oocytes after culture in vitro for 17 hr. In GVBD oocytes, P/Q-, N-, L (anti-1C, anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, in GVBD-arrested oocytes, none of the three types of Ca2+-channels were identified in 72-86% of oocytes. The present study demonstrates that in most GVBD-arrested oocytes that do not mature to MII, there is no Ca2+-channel identified. Therefore, most of the GVBD-arrested oocytes seem to have defects in Ca2+-channel expression/translation. Also, distributional changes of Ca2+-channels take place depending on the maturation progress in GV oocytes and MII stage oocytes (ovulated and 17 hr cultured MII stage oocytes). In addition, we found evidence that a functional voltage-dependent Ca2+-channel (L-type) exists in mouse oocytes (ovulated and cultured MII staged oocytes by a confocal laser scanning microscope).  相似文献   

5.
The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes/embryos. To identify a stage feasible for the cryopreservation of teleost oocytes, we investigated the permeability to water and various cryoprotectants of medaka (Oryzias latipes) oocytes at the germinal vesicle (GV) and metaphase II (MII) stages. In sucrose solutions, the volume changes were greater in GV oocytes than MII oocytes. Estimated values for osmotically inactive volume were 0.41 for GV oocytes and 0.74 for MII oocytes. Water-permeability (microm/min/atm) at 25 degrees C was higher in GV oocytes (0.13+/-0.01) than MII oocytes (0.06+/-0.01). The permeability of MII oocytes to various cryoprotectants (glycerol, propylene glycol, ethylene glycol, and DMSO) was quite low because the oocytes remained shrunken during 2 h of exposure in the cryoprotectant solutions at 25 degrees C. When the chorion of MII oocytes was removed, the volume change was not affected, except in DMSO solution, where dechorionated oocytes shrunk and then regained their volume slowly; the P(DMSO) value was estimated to be 0.14+/-0.01x10(-3) cm/min. On the other hand, the permeability of GV oocytes to cryoprotectants were markedly high, the P(s) values (x10(-3) cm/min) for propylene glycol, ethylene glycol, and DMSO being 2.21+/-0.29, 1.36+/-0.18, and 1.19+/-0.01, respectively. However, the permeability to glycerol was too low to be estimated, because GV oocytes remained shrunken after 2 h of exposure in glycerol solution. These results suggest that, during maturation, medaka oocytes become less permeable to water and to small neutral solutes, probably by acquiring resistance to hypotonic conditions before being spawned in fresh water. Since such changes would make it difficult to cryopreserve mature oocytes, immature oocytes would be more suitable for the cryopreservation of teleosts.  相似文献   

6.
The effects of osmotic stress on germinal vesicle (GV) and metaphase II (MII) stage bovine cumulus oocyte complexes (COCs) were evaluated by first exposing them to various anisotonic NaCl solutions (75, 150, 600, 1200, 2400, and 4800 +/- 5 mOsm/kg) for 10 min and then returning them to isotonic TL-Hepes solution (270 +/- 5 mOsm/kg) at 20 +/- 2 degrees C. Percentages of oocyte maturation, fertilization, polyspermy, cleavage, and blastocyst formation were measured as endpoints. Exposure to anisotonic conditions had a significant (P < 0.05) effect on the developmental competence of both GV and bovine MII COCs. Oocytes at the GV stage were more sensitive to anisotonic stress than MII oocytes (P < 0.05). None of the GV oocytes developed to the blastocyst stage after exposure to hypertonic conditions (2400 or 4800 mOsm solutions), while exposure to hypotonic conditions (75 or 150 mOsm solutions) resulted in significantly lower (P < 0.05) blastocyst formation (9% and 13%, respectively) compared to the isotonic control (25%). A dramatic decrease to 4% development to blastocyst was observed for MII oocytes following exposure to a 4800 mOsm solution. Blastocyst formation of MII oocytes which were exposed to 75, 150, 600, 1200, or 2400 mOsm solutions were similar (15%, 20%, 18%, 14%, and 13%, respectively; P > 0.05), but lower (P < 0.05) than those in the control group (29%). Exposing GV oocytes to anisotonic conditions increased polyspermic fertilization (P < 0.05), although MII oocytes were not similarly affected (P > 0.05). These data support the hypothesis that osmotic stress is detrimental to bovine oocytes and must be considered when developing optimized cryopreservation procedures for these cells. Mol. Reprod. Dev. 55:212-219, 2000.  相似文献   

7.
Membrane permeability is very helpful for the optimization of effective cryopreservation protocols. In this study, experiments were performed to determine these characteristics for immature (germinal vesicle (GV)) and in vitro matured (metaphase II (MII)) bovine oocytes within 4-37 °C, and a new step-wise adding and diluting protocol for ethylene glycol (EG) was developed and verified. Osmotically inactive volumes (Vb) of GV and MII oocytes were calculated to be 16.1% and 26.1%. The membrane permeability of the oocytes to water (Lp) in the presence of EG were between 0.08-0.18 and 0.14-0.28 μm/min/atm, and the membrane permeability of the oocytes to solutes (Ps) were between 0.0011-0.0038 and 0.0029-0.0061 cm/min for GV and MII oocytes, respectively. The activation energies (Ea) for Lp and Ps in the presence of EG were 3.68 and 6.84 kcal/mol for GV oocyte, while 3.62 and 0.83-9.08 kcal/mol for MII oocyte. The data indicated that Lp and Ps varied significantly between developmental stages and among temperatures evaluated. Based on these results, different protocols for EG adding and diluting from oocytes were developed and tested. The assessment of cleavage rate and embryonic development in vitro confirmed that the designed 4-step adding 2-step diluting protocol indicated a better outcome. The present study is helpful for better understanding of cryobiological properties and the design of cryopreservation protocols for bovine oocytes.  相似文献   

8.
Temperature dependence of anion transport in the human red blood cell   总被引:2,自引:0,他引:2  
Arrhenius plots of chloride and bromide transport yield two regions with different activation energies (Ea). Below 15 or 25 degrees C (for Cl- and Br-, respectively), Ea is about 32.5 kcal/mol; above these temperatures, about 22.5 kcal/mol (Brahm, J. (1977) J. Gen. Physiol. 70, 283-306). For the temperature dependence of SO4(2-) transport up to 37 degrees C, no such break could be observed. We were able to show that the temperature coefficient for the rate of SO4(2-) transport is higher than that for the rate of denaturation of the band 3 protein (as measured by NMR) or the destruction of the permeability barrier in the red cell membrane. It was possible, therefore, to extend the range of flux measurements up to 60 degrees C and to show that, even for the slowly permeating SO4(2-) in the Arrhenius plot, there appears a break, which is located somewhere between 30 and 37 degrees C and where Ea changes from 32.5 to 24.1 kcal/mol. At the break, the turnover number is approx. 6.9 ions/band 3 per s. Using 35Cl- -NMR (Falke, Pace and Chan (1984) J. Biol. Chem. 259, 6472-6480), we also determined the temperature dependence of Cl- -binding. We found no significant change over the entire range from 0 to 57 degrees C, regardless of whether the measurements were performed in the absence or presence of competing SO4(2-). We conclude that the enthalpy changes associated with Cl- - or SO4(2-)-binding are negligible as compared to the Ea values observed. It was possible, therefore, to calculate the thermodynamic parameters defined by transition-state theory for the transition of the anion-loaded transport protein to the activated state for Cl-, Br- and SO4(2-) below and above the temperatures at which the breaks in the Arrhenius plots are seen. We found in both regions a high positive activation entropy, resulting in a low free enthalpy of activation. Thus the internal energy required for carrying the complex between anion and transport protein over the rate-limiting energy barrier is largely compensated for by an increase of randomness in the protein and/or its aqueous environment.  相似文献   

9.
Cryopreservation of bovine oocytes would be beneficial both for nuclear transfer and for preservation efforts. The overall objective of this study was to evaluate the viability as well as the cryodamage to the nucleus vs. cytoplasm of bovine oocytes following freezing-thawing of oocytes at immature (GV) and matured (MII) stages using in vitro fertilization (IVF), parthenogenetic activation, or nuclear transfer assays. Oocytes were collected from slaughterhouse ovaries. Oocytes at the GV, MII, or MII but enucleated (MIIe) stages were cryopreserved in 5% (v/v) ethylene glycol; 6% (v/v) 1,2-propanediol; and 0.1-M sucrose in PBS supplemented with 20% (v/v) fetal bovine serum. Frozen-thawed oocytes were subjected to IVF, parthenogenetic activation, or nuclear transfer assays. Significantly fewer GV oocytes survived (i.e., remained morphologically intact during freezing-thawing) than did MII oocytes (47% vs. 84%). Subsequent development of the surviving frozen-thawed GV and MII oocytes was not different (58% and 60% cleavage development; 7% and 12% blastocyst development at Day 9, respectively, P > 0.05). Parthenogenetic activation of frozen-thawed oocytes resulted in significantly lower rates of blastocyst development for the GV than the MII oocyte groups (1% vs. 14%). Nuclear transfer with cytoplasts derived from frozen-thawed GV, MII, MIIe, and fresh-MII control oocytes resulted in 5%, 16%, 14%, and 17% blastocyst development, respectively. However, results of preliminary embryo transfer trials showed that fewer pregnancies were produced from cloned embryos derived from frozen oocytes or cytoplasts (9%, n = 11 embryos) than from fresh ones (19%, n = 21 embryos). Transfer of embryos derived by IVF from cryopreserved GV and MII oocytes also resulted in term development of calves. Our results showed that both GV and MII oocytes could survive freezing and were capable of developing into offspring following IVF or nuclear transfer. However, blastocyst development of frozen-thawed oocytes remains poorer than that of fresh oocytes, and our nuclear transfer assay suggests that this poorer development was likely caused by cryodamage to the oocyte cytoplasm as well as to the nucleus. Mol. Reprod. Dev. 51:281–286, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Hematopoietic stem cells derived from fetal liver have promising therapeutic potential for allotransplantation but require a specific protocol to minimize the damage produced by cryopreservation procedures. In this study, a fundamental approach was applied for designing a cell preservation protocol. To this end, the biophysical characteristics that describe the osmotic reaction of CD34(+)CD38(-) human fetal liver stem cell candidates were studied using fluorescent microscopy. The osmotically inactive volume of the stem cell candidates was determined as 48% of the isotonic volume. The permeability coefficients for water and Me(2)SO were determined at T = +22 degree C: L(p) = 0.27 +/- 0.03 microm x min(-1)atm(-1), P(Me(2)SO)) = 2.09 +/- 0.85 x 10 (-4) cm x min(-1), sigma (Me(2)SO)) = 0.63 +/- 0.03 and at T = +12 degree C: L(p) = 0.15 +/-0.02 microm x min(-1)atm(-1), P(Me(2)SO)) = 6.44 +/-1.42 x 10 (-5) cm x min(-1), sigma (Me(2)SO)) = 0.46 +/- 0.05. The results obtained suggest that post-hypertonic and hypotonic stress are the possible reasons for damage to a CD34(+)CD38(-) cell during the cryopreservation procedure.  相似文献   

11.
The present study was conducted to examine the utility of rapidly matured oocytes as recipients for production of porcine embryos reconstituted with adult skin fibroblasts and whether arrest of meiotic resumption of recipient oocytes at the germinal vesicle (GV) stage by dibutyryl cyclic AMP (dbcAMP) improves in vitro developmental rates after reconstruction. At 24 h of maturation in the medium, 36.3% of oocytes reached the metaphase II (MII) stage. At 30 h of maturation, the percentage (71.4%) of MII oocytes did not significantly differ from that (78.0%) at 42 h of maturation. When MII oocytes recovered at 24 h of maturation were used as recipients, 22/156 (14.1%) cloned embryos developing to the blastocyst stage was significantly (P < 0.05) higher than those of embryos reconstituted with oocytes collected at 30 h (5/168; 3.0%) and 42 h (13/217; 6.0%) of maturation. Culture of oocytes in medium containing 1 mM dbcAMP for 20 h maintained 72.9% in the GV stage, whereas only 15.0% of nontreated oocytes were in the GV stage (P < 0.05). The effect of dbcAMP was reversible. However, the treatment of recipient oocytes with dbcAMP did not affect the development of reconstructed embryos when compared with nontreated oocytes. These results indicate that rapidly matured oocytes are superior in their ability to support development of porcine reconstructed embryos; however, arrest of meiotic resumption of recipient oocytes at the GV stage by dbcAMP does not improve reconstructed embryo developmental rates.  相似文献   

12.
Cumulus cell-enclosed bovine oocytes in germinal vesicle (GV) and in metaphase II (MII) stages were cryopreserved. Different concentrations (1 M; 1.5 M) of various cryoprotectants (glycerol, PROH, DMSO) were tested. After thawing, the oocytes were exposed to various carbohydrates (sucrose, lactose, trehalose) at a concentration of 0.1 M and 0.25 M for cryoprotectant removal. Developmental capacity of the frozen-thawed oocytes was studied by in vitro maturation, fertilization and culture. We found no difference in subsequent development using glycerol or PROH for GV and MII oocytes. The DMSO treatment led to significantly better cleavage and development up to 4-cell stage in MII oocytes. Development beyond the 8-cell stage was obtained only when unmatured oocytes were frozen. No difference in the efficiency of the 3 cryoprotectants was detected in MII oocytes. However, in GV oocytes, glycerol and PROH yielded significantly better cleavage and 4-cell rate compared to DMSO (P<0.001). Influence of the concentration of a cryoprotectant on development was not observed in GV or MII oocytes. Among the 3 cryoprotectants, DMSO was less suitable, at both concentrations, than PROH and glycerol for the development of 6- to 8-cell stage embryos in the GV group. In the MII group, 1.5 M DMSO was as efficient as PROH and as glycerol at a 1.5-M concentration, and it was more efficient than 1 M glycerol. The use of carbohydrates during rehydration did not render a beneficial effect at either of the 2 concentrations, and when no carbohydrates were used in the MII group the oocytes cleaved better than GV oocytes.  相似文献   

13.
《Theriogenology》2011,75(9):1539-1547
Aging decreases the fertility of mammalian females. In old oocytes at metaphase II stage (MII) there are alterations of the chromatin configuration and chromatin modifications such as histone acetylation. Recent data indicate that alterations of histone acetylation at MII initially arise at germinal vesicle stage (GV). Therefore, we hypothesized that the chromatin configuration and histone methylation could also change in old GV oocytes. In agreement with our hypothesis, young GV oocytes had non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) chromatin configurations, while old GV oocytes also had chromatin configurations that could not be classified as NSN or SN. Regarding histone methylation, young GV and MII oocytes showed dimethylation of lysines 4, 9, 36 and 79 in histone 3 (H3K4me2, H3K9me2, H3K36me2, H3K79me2), lysine 20 in histone H4 (H4K20me2) and trimethylation of lysine 9 in histone 3 (H3K9me3) while a significant percentage of old GV and MII oocytes lacked H3K9me3, H3K36me2, H3K79me2 and H4K20me2. The percentage of old oocytes lacking histone methylation was similar at GV and MII suggesting that alterations of histone methylation in old MII oocytes initially arise at GV. Besides, the expression of the histone methylation-related factors Cbx1 and Sirt1 was also found to change in old GV oocytes. In conclusion, our study reports changes of chromatin configuration and histone methylation in old GV oocytes, which could be very useful for further understanding of human infertility caused by aging.  相似文献   

14.
Aging decreases the fertility of mammalian females. In old oocytes at metaphase II stage (MII) there are alterations of the chromatin configuration and chromatin modifications such as histone acetylation. Recent data indicate that alterations of histone acetylation at MII initially arise at germinal vesicle stage (GV). Therefore, we hypothesized that the chromatin configuration and histone methylation could also change in old GV oocytes. In agreement with our hypothesis, young GV oocytes had non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) chromatin configurations, while old GV oocytes also had chromatin configurations that could not be classified as NSN or SN. Regarding histone methylation, young GV and MII oocytes showed dimethylation of lysines 4, 9, 36 and 79 in histone 3 (H3K4me2, H3K9me2, H3K36me2, H3K79me2), lysine 20 in histone H4 (H4K20me2) and trimethylation of lysine 9 in histone 3 (H3K9me3) while a significant percentage of old GV and MII oocytes lacked H3K9me3, H3K36me2, H3K79me2 and H4K20me2. The percentage of old oocytes lacking histone methylation was similar at GV and MII suggesting that alterations of histone methylation in old MII oocytes initially arise at GV. Besides, the expression of the histone methylation-related factors Cbx1 and Sirt1 was also found to change in old GV oocytes. In conclusion, our study reports changes of chromatin configuration and histone methylation in old GV oocytes, which could be very useful for further understanding of human infertility caused by aging.  相似文献   

15.
Studies were conducted to compare viability of immature and mature porcine oocytes vitrified in ethylene glycol (EG) using open-pulled straws (OPS). Oocytes that had been allowed to mature for 12 h (germinal vesicle group; GV) and 40 h (metaphase II group; MII) were divided into three treatments: (1) control; (2) treated with cytochalasin B and exposed to EG; and (3) treated with cytochalasin B and vitrified by stepwise exposure to EG in OPS. After warming, a sample of oocytes was fixed and evaluated by specific fluorescent probes before visualization using confocal microscopy. The remaining oocytes were fertilized and cleavage rate was recorded. Exposure of GV oocytes to EG or vitrification had a dramatic effect on spindle and chromosome configurations and no cleavage was obtained after in vitro fertilization. When MII oocytes were exposed to EG or were vitrified, 18 and 11% of oocytes, respectively, maintained the spindle structure and either EG exposure or vitrification resulted in substantial disruption in microfilament organization. The cleavage rates of mature oocytes after being exposed to EG or after vitrification were similar (14 and 13%, respectively) but were significantly less than that of control oocytes (69%). These results indicate that porcine oocytes at different meiotic stages respond differently to cryopreservation and MII porcine oocytes had better resistance to cryopreservation than GV stage oocytes.  相似文献   

16.
Oocyte cryopreservation is a potentially valuable technique for salvaging the germ-line when a valuable mare dies, but facilities for in vitro embryo production or oocyte transfer are not immediately available. This study examined the influence of maturation stage and freezing technique on the cryopreservability of equine oocytes. Cumulus oocyte complexes were frozen at the immature stage (GV) or after maturation in vitro for 30 hr (MII), using either conventional slow freezing (CF) or open pulled straw vitrification (OPS); cryoprotectant-exposed and untreated nonfrozen oocytes served as controls. After thawing, GV oocytes were matured in vitro, and MII oocytes were incubated for 0 or 6 hr, before staining to examine meiotic spindle quality by confocal microscopy. To assess fertilizability, CF MII oocytes were subjected to intracytoplasmic sperm injection (ICSI) and cultured in vitro. At 12, 24, and 48 hr after ICSI, injected oocytes were fixed to examine their progression through fertilization. Both maturation stage and freezing technique affected oocyte survival. The meiosis resumption rate was higher for OPS than CF for GV oocytes (28% vs. 1.2%; P < 0.05), but still much lower than for controls (66%). Cryopreserving oocytes at either stage induced meiotic spindle disruption (37%-67% normal spindles vs. 99% in controls; P < 0.05). Among frozen oocytes, however, spindle quality was best for oocytes frozen by CF at the MII stage and incubated for 6 hr post-thaw (67% normal); since this combination of cryopreservation/IVM yielded the highest proportion of oocytes reaching MII with a normal spindle (35% compared to <20% for other groups), it was used when examining the effects of cryopreservation on fertilizability. In this respect, the rate of normal fertilization for CF MII oocytes after ICSI was much lower than for controls (total oocyte activation rate, 26% vs. 56%; cleavage rate at 48 hr, 8% vs. 42%: P < 0.05). Thus, although IVM followed by CF yields a respectable percentage of normal-looking MII oocytes (35%), their ability to support fertilization is severely compromised.  相似文献   

17.
In this study we examined the effects of low, above freezing temperatures on the viability and functionality of bovine oocytes. Germinal vesicle (GV) stage and in vitro matured oocytes (MII) were exposed to various combinations of time (15 and 60 min) and temperature (4, 16, 23, and 39 degrees C). After being treated, the ability of oocytes to undergo maturation and fertilization in vitro was examined, as well as their viability assayed by two fluorescent probes, fluorescein diacetate (FDA) and 5-carboxyfluorescein diacetate (cFDA). Cooling GV oocytes to 16 degrees C for 15 min reduced the fertilization rate by more than 40%, compared with those left at 39 degrees C. Surprisingly, cooling oocytes to 4 degrees C reduced the fertilization rate by only 10% compared with control. Exposing GV oocytes to temperatures below 23 degrees C reduced their viability. Similar to the reduction in fertilization, the viability of GV oocytes after exposure to 16 degrees C was reduced by more than 50%, whereas exposure to 4 degrees C reduced it by only 9%. Viability measurements using FDA and cFDA gave comparable results and showed a similar trend. The viability of MII oocytes and of GV oocytes pretreated with butylated hydroxytoluene, following exposure to low temperatures, was higher compared with that of GV controls. We interpret these results as indicating chilling effects on membrane integrity. Improving the chilling resistance of bovine oocytes may facilitate their short- and long-term preservation.  相似文献   

18.
A series of experiments were designed to evaluate the meiotic competence of mouse oocyte germinal vesicle (GV) in rabbit ooplasm. In experiment 1, an isolated mouse GV was transferred into rabbit GV-stage cytoplast by electrofusion. It was shown that 71.8% and 63.3% of the reconstructed oocytes completed the first meiosis as indicated by the first polar body (PB1) emission when cultured in M199 and M199 + PMSG, respectively. Chromosomal analysis showed that 75% of matured oocytes contained the normal 20 mouse chromosomes. When mouse spermatozoa were microinjected into the cytoplasm of oocytes matured in M199 + PMSG and M199, as many as 59.4% and 48% finished the second meiosis as revealed by the second polar body (PB2) emission and a few fertilized eggs developed to the eight-cell stage. In experiment 2, a mouse GV was transferred into rabbit MII-stage cytoplast. Only 13.0-14.3% of the reconstructed oocytes underwent germinal vesicle breakdown (GVBD) and none proceeded past the MI stage. When two mouse GVs were transferred into an enucleated rabbit oocyte, only 8.7% went through GVBD. In experiment 3, a whole zona-free mouse GV oocyte was fused with a rabbit MII cytoplast. The GVBD rates were increased to 51.2% and 49.4% when cultured in M199 + PMSG and M199, respectively, but none reached the MII stage. In experiment 4, a mouse GV was transferred into a partial cytoplasm-removed rabbit MII oocyte in which the second meiotic apparatus was still present. GVBD occurred in nearly all the reconstructed oocytes when one or two GVs were transferred and two or three metaphase plates were observed in ooplasm after culturing in M199 + PMSG for 8 hr. These data suggest that cytoplasmic factors regulating the progression of the first and the second meioses are not species-specific in mammalian oocytes and that these factors are located in the meiotic apparatus and/or its surrounding cytoplasm at MII stage.  相似文献   

19.
Protein kinase C (PKC) is a family of Ser/Thr protein kinases that can be activated by Ca2+, phospholipid and diacylglycerol. There is evidence that PKC plays key roles in the meiotic maturation and activation of mammalian oocytes. The present study aimed to monitor the effect of age, germinal vesicle (GV) transfer and modified nucleoplasmic ratio on the subcellular distribution profile of PKCα, an important isozyme of PKC, in mouse oocytes undergoing meiotic maturation and following egg activation. Germinal vesicle oocytes were collected from 6-8-week-old and 12-month-old mice. Germinal vesicle-reconstructed oocytes and GV oocytes with one-half or one-third of the original oocyte volume were created using micromanipulation and electrofusion. The subcellular localization of PKCα was detected by immunocytochemistry and laser confocal microscopy. Our study showed that PKCα had a similar location pattern in oocytes and early embryos from young and old mice. PKCα was localized evenly in ooplasm, with weak staining in GV at the GV stage, and present in the entire meiosis II (MII) spindle at the MII stage. In pronuclear and 2-cell embryos, PKCα was concentrated in the nucleus except for the nucleolus. After the GV oocytes were reconstructed, the resultant MII oocytes and embryos showed a similar distribution of PKCα between reconstructed and unreconstructed controls. After one-half or two-thirds of the cytoplasm was removed from the GV oocytes, PKCα still had a similar location pattern in MII oocytes and early embryos from the GV oocytes with modified nucleoplasmic ratio. Our study showed that age, GV transfer and modified nucleocytoplasmic ratio does not affect distribution of PKCα during mouse oocyte maturation, activation, and early embryonic mitosis.  相似文献   

20.
Little is known about mitochondrial DNA (mtDNA) replication during oocyte maturation and its regulation by extracellular factors. The present study determined the effects of supplementation of maturation medium with porcine follicular fluid (pFF; 0, 10%, 20%, and 30%) on mtDNA copy number and oocyte maturation in experiment 1; the effects on epidermal growth factor (EGF; 10 ng/mL), neuregulin 1 (NRG1; 20 ng/mL), and NRG1 + insulin-like growth factor 1 (IGF1; 100 ng/mL + NRG1 20 ng/mL), on mtDNA copy number, oocyte maturation, and embryo development after parthenogenic activation in experiment 2; and effects on embryo development after in vitro fertilization in experiment 3. Overall, mtDNA copy number increased from germinal vesicle (GV) to metaphase II (MII) stage oocytes after in vitro maturation (GV: 167 634.6 ± 20 740.4 vs. MII: 275 131.9 ± 9 758.4 in experiment 1; P < 0.05; GV: 185 004.7 ± 20 089.3 vs. MII: 239 392.8 ± 10 345.3 in experiment 2; P < 0.05; Least Squares Means ± SEM). Supplementation of IVM medium with pFF inhibited mtDNA replication (266 789.9 ± 11 790.4 vs. 318 510.1 ± 20 377.4; P < 0.05) and oocyte meiotic maturation (67.3 ± 0.7% vs. 73.2 ± 1.2%, for the pFF supplemented and zero pFF control, respectively; P < 0.01). Compared with the control, addition of growth factors enhanced oocyte maturation. Furthermore, supplementation of NRG1 stimulated mitochondrial replication, increased mtDNA copies in MII oocytes than in GV oocytes, and increased percentage of blastocysts in both parthenogenetic and in vitro fertilized embryos. In this study, mitochondrial biogenesis in oocytes was stimulated during in vitro maturation. Oocyte mtDNA copy number was associated with developmental competence. Supplementation of maturation medium with NRG1 increased mtDNA copy number, and thus provides a means to improve oocyte quality and developmental competence in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号