首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We studied the distribution of hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), within hemlock trees for three summer (progrediens) and two winter (sistens) generations in northern Georgia. Eastern hemlock, Tsuga canadensis (L.) Carrière, trees were treated with 0, 10, or 25% of 1.5 g of imidacloprid per 2.5 cm of tree diameter at breast height and fertilized or not in a factorial design. Adelgid ovisacs per centimeter of branch were more abundant from June 2007 to June 2008 in the upper tree crown of insecticide untreated trees and when all trees were combined and that was the general trend for most comparisons. However, ovisacs were more abundant in the lower crown of insecticide treated trees in June 2008. More sistens nymphs settled on the upper crown branches than on the lower branches in summers 2007 and 2008. Higher eggs per ovisac were observed in the upper crown in February 2008 and in both the winter and summer 2009. In contrast, adelgids were more fecund in the lower crown in June 2008. On fertilized trees, eggs laid per adult were higher in the upper crown in February 2008. In summer 2008, eggs per ovisac were higher in the lower crown, but this reversed again to the upper crown by summer 2009. New growth of branches also varied among sample dates. These data demonstrate the variable distribution of adelgid and hemlock growth within trees over time and suggest that sampling only one crown area will not provide accurate estimates of adelgid densities.  相似文献   

2.
1. Settlement timing is often an important factor in interspecific herbivore interactions, as early‐arriving species may encounter higher resource availability and/or avoid induced defences. Despite the general importance of priority effects to the outcome of herbivore interactions, there has been little exploration of such interactions on woody host plants where their impact can only be measured over multiple years. 2. In the eastern U.S.A., two invasive species, the hemlock woolly adelgid Adelges tsugae and the elongate hemlock scale Fiorinia externa, share a native host, eastern hemlock Tsuga canadensis. Their interaction and its consequences were investigated for plant growth – hemlock saplings that had been inoculated with either A. tsugae or F. externa, starting in spring 2007, were cross‐infested with the other insect in spring 2009. A set of uninfested trees was simultaneously infested with A. tsugae, F. externa, both, or neither insect (= control), and insect density and plant growth was assessed in all treatments. 3. Adelges tsugae settlement rates did not differ if it settled alone or simultaneously with F. externa, but were ~45% lower on trees previously infested with F. externa. There was no difference in F. externa settlement rates, and plant growth did not differ substantively between any of the herbivore treatments. 4. At a temporal scale (i.e. multiple growing seasons) appropriate to interactions between woody plants and their herbivores, this work demonstrates that plant‐mediated priority effects can substantially affect herbivore settlement and thus the outcome of interspecific competition.  相似文献   

3.
Leucopis spp. (Diptera: Chamaemyiidae) from the Pacific Northwest previously were identified as potential biological control agents for the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), in the eastern United States. We collected Leucopis spp. larvae from A. tsugae infested western hemlocks in Oregon and Washington and reared them on an unidentified Pineus spp., Pineus strobi (Hartig), Adelges cooleyi (Gillette), Adelges piceae (Ratzeburg), and A. tsugae in three no-choice tests. Leucopis spp. survival on A. tsugae was significantly higher than on A. piceae during the 2010 progrediens generation test and significantly higher than on P. strobi and A. cooleyi during the 2010 sistens generation test. However, across all three tests, some larvae completed development to adult on all four of the alternative adelgid species. Larvae that survived to the adult stage were identified as Leucopis argenticollis Zetterstedt and Leucopis piniperda Malloch. These results suggest that populations of L. argenticollis and L. piniperda in the Pacific Northwest may not be specific to A. tsugae. We also studied the phenology of Leucopis spp. on fourteen A. tsugae infested western hemlock trees in Oregon and Washington over a period of 14 mo. Leucopis spp. larvae were collected year-round, but highest densities coincided with the presence of progrediens and sistens eggs and adults of A. tsugae. There was a positive correlation between Leucopis spp. and A. tsugae abundance.  相似文献   

4.
The hemlock woolly adelgid, Adelges tsugae Annand is an invasive insect that frequently causes hemlock (Tsuga spp.) mortality in the eastern United States. Studies have shown that once healthy hemlocks become infested by the adelgid, nutrients are depleted from the tree, leading to both tree decline and a reduction of the adelgid population. Since A. tsugae is dependent on hemlock for nutrients, feeding on trees in poor health may affect the ability of the insect to obtain necessary nutrients and may consequently affect their physiological and population health. Trees were categorized as lightly or moderately impacted by A. tsugae based on quantitative and qualitative tree health measurements. Population health of A. tsugae on each tree was determined by measuring insect density and peak mean fecundity; A. tsugae physiological health was determined by measuring insect biomass, total carbon, carbohydrate, total nitrogen, and amino nitrogen levels. Adelges tsugae from moderately impacted trees exhibited significantly greater fecundity than from lightly impacted trees. However, A. tsugae from lightly impacted hemlocks contained significantly greater levels of carbohydrates, total nitrogen, and amino nitrogen. While the results of the physiological analysis generally support our hypothesis that A. tsugae on lightly impacted trees are healthier than those on moderately impacted trees, this was not reflected in the population health measurements. Adelges tsugae egg health in response to tree health should be verified. This study provides the first examination of A. tsugae physiological health in relation to standard A. tsugae population health measures on hemlocks of different health levels.  相似文献   

5.

Background and Aims

Exotic herbivores that lack a coevolutionary history with their host plants can benefit from poorly adapted host defences, potentially leading to rapid population growth of the herbivore and severe damage to its plant hosts. The hemlock woolly adelgid (Adelges tsugae) is an exotic hemipteran that feeds on the long-lived conifer eastern hemlock (Tsuga canadensis), causing rapid mortality of infested trees. While the mechanism of this mortality is unknown, evidence indicates that A. tsugae feeding causes a hypersensitive response and alters wood anatomy. This study investigated the effect of A. tsugae feeding on biomechanical properties at different spatial scales: needles, twigs and branches.

Methods

Uninfested and A. tsugae-infested samples were collected from a common garden experiment as well as from naturally infested urban and rural field sites. Tension and flexure mechanical tests were used to quantify biomechanical properties of the different tissues. In tissues that showed a significant effect of herbivory, the potential contributions of lignin and tissue density on the results were quantified.

Key Results Adelges tsugae

infestation decreased the abscission strength, but not flexibility, of needles. A. tsugae feeding also decreased mechanical strength and flexibility in currently attacked twigs, but this effect disappeared in older, previously attacked branches. Lignin and twig tissue density contributed to differences in mechanical strength but were not affected by insect treatment.

Conclusions

Decreased strength and flexibility in twigs, along with decreased needle strength, suggest that infested trees experience resource stress. Altered growth patterns and cell wall chemistry probably contribute to these mechanical effects. Consistent site effects emphasize the role of environmental variation in mechanical traits. The mechanical changes measured here may increase susceptibility to abiotic physical stressors in hemlocks colonized by A. tsugae. Thus, the interaction between herbivore and physical stresses is probably accelerating the decline of eastern hemlock, as HWA continues to expand its range.  相似文献   

6.
《Biological Control》2005,32(2):200-207
Laricobius nigrinus Fender (Coleoptera: Derodontidae) is being evaluated as a biological control agent for the hemlock woolly adelgid (HWA), Adelges tsugae Annand (Homoptera: Adelgidae). Predator exclusion studies on survival, reproduction, and impact on HWA populations were investigated over two years in Virginia, US. In year 1, branches were selected to receive one of three treatments: caged hemlock branches with predators; caged hemlock branches without predators; and uncaged hemlock branches. L. nigrinus adults survived from February to April, producing up to 41 progeny per female. Adelgid densities on branches exposed to L. nigrinus exhibited a significantly higher rate of decline than those on branches not exposed to predators. Additionally, the final density of sistens and progrediens was significantly lower on caged branches containing L. nigrinus than on caged and uncaged branches without predators. In year 2, L. nigrinus survival and predation was evaluated over two 10-week sample periods: (November–January and February–April). L. nigrinus survived throughout the 6-month test period, with 89% surviving through January and 55% through April. Between February and April, 38 progeny were produced per beetle. The decrease in adelgids, measured in both numbers of adelgids and percent reduction per branch, was significantly higher (p < 0.0001) on caged branches with L. nigrinus than on those without predators.  相似文献   

7.
1 We assessed the importance of several factors potentially affecting the settlement rate of the invasive hemlock woolly adelgid Adelges tsugae (Hemiptera: Adelgidae) on uninfested foliage of the eastern hemlock, Tsuga canadensis. We conducted our experiments in Massachusetts (U.S.A.) with overwintering sistens adelgids, and applied standard densities of infested foliage to uninfested branches in a planned multiple‐comparison design. 2 Settlement rates of progrediens crawlers produced by the overwintering sistens were highest when adelgid‐infested foliage was loosely attached to uninfested foliage and both branches were then enclosed in a mesh sleeve. 3 Early‐emerging crawlers settled at a higher rate than did late‐emerging crawlers. 4 Increasing the density of infested branches did not affect settlement rates. 5 We also tested whether less severe winter conditions improved settlement, and found that overwintering infested foliage in a refrigerator decreased settlement rate relative to foliage overwintered outdoors. 6 Our results suggest a protocol for adelgid inoculations that could substantially increase the success rate of experimental manipulations and encourage additional research on the population dynamics of this pest.  相似文献   

8.
The hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), is an exotic insect pest that is killing eastern hemlock, Tsuga canadensis (L.) Carrière, and Carolina hemlock, Tsuga caroliniana Engelmann, in the eastern United States. We used the sequential interval procedure to develop a binomial sequential sampling plan for A. tsugae sistens on individual eastern hemlock trees that uses nondestructive sampling of new shoots. The actual a (type I) and beta (type II) error rates were essentially 5 and 10%, respectively. Tallies of new shoots infested by at least one A. tsugae sistens were compared with stop values for thresholds of 10 and 30% of new hemlock shoots infested. Twenty to 80 new shoots had to be examined per tree to render a low, high, or indeterminate classification, which took < 2 min per tree regardless of the threshold used. This plan should be an efficient and cost-effective tool in the management of A. tsugae infestations on individual, high-value eastern hemlock trees.  相似文献   

9.
The ability to survive winter temperatures is a key determinant of insect distributional ranges and population dynamics in temperate ecosystems. Although many insects overwinter in a state of diapause, the hemlock woolly adelgid [Adelges tsugae (Annand)] is an exception and instead develops during winter. We studied a low density population of A. tsugae, which undergoes two generations per year, in a forested area in which its only available host plant, eastern hemlock (Tsuga canadensis), was patchy and scarce. In January 2014, this area also experienced an exceptionally cold winter due to a southward shift in the North Polar Vortex. We used 3 years of systematic sampling prior to the 2014 cold wave, and 1 year following, to quantify the effect of the 2014 cold wave on A. tsugae population dynamics. We observed a strong negative correlation between the number of days below sub-zero temperature thresholds and A. tsugae, and estimated that the 2014 cold wave resulted in at least a 238% decrease in its population growth rate. However, we also observed that the detrimental effect of the 2014 cold wave to A. tsugae was short-lived, as populations measured in the late summer of 2014 rebounded to pre-2014 cold wave densities. This study highlights the effect that cold winter weather events can have on a winter active insect species, and the speed at which populations can recover from stochastic mortality events.  相似文献   

10.
Although sap-feeding insects are known to negatively affect plant growth and physiology, less is known about sap-feeding insects on woody plants. Adelges tsugae (Annand Hemiptera: Adelgidae), the hemlock woolly adelgid, is an invasive sap-feeding insect in eastern North America that feeds on and kills Tsuga canadensis (L. Carrière), eastern hemlock. Newly hatched adelgid nymphs crawl to young unattacked tissue, settle and immediately enter diapause (aestivation) while attached to hemlock in summer. We assessed the effect of A. tsugae infestation on T. canadensis growth and physiology by analyzing hemlock growth on lateral and terminal branches, water potential, photosynthesis, stomatal conductance, and foliar nitrogen (%N). A. tsugae infestation greatly decreased terminal and lateral growth of eastern hemlock. In addition, A. tsugae presence reduced photosynthesis by 10 % in September and 36 % in October. Adelgid-infested hemlocks also exhibited signs of water stress that included notable reductions in water potential and stomatal conductance. These responses shed light on possible mechanisms of adelgid-induced mortality.  相似文献   

11.
《Biological Control》2013,64(3):359-369
Hybridization between introduced biological control agents and native species has the potential to impact native biodiversity and pest control efforts. This study reports progress towards predicting the outcome of hybridization between two beetle species, the introduced Laricobius nigrinus Fender and the native L. rubidus LeConte. L. nigrinus is a predator from western North America introduced to hemlock stands in the eastern United States as a biological control of the hemlock woolly adelgid [Adelges tsugae Annand (Hemiptera: Adelgidae)]. Laricobius rubidus is a closely related eastern species that also feeds on A. tsugae but prefers pine adelgids (Pineus strobi Hartig) on white pine (Pinus strobus L.). Six microsatellite markers plus mitochondrial COI haplotypes were used to examine genetic structure of these two Laricobius species across North America. In their native ranges, major geographic features have impacted gene flow: the intermountain region in the West, and the Appalachian Mountains in the East. Analysis of 1229 individuals from adelgid-infested hemlock trees in release sites in the eastern United States found widespread hybridization with asymmetrical introgression towards L. nigrinus on hemlock. The ultimate outcome of hybridization could therefore be a complex mosaic of genetic introgression across the landscape, depending on the distribution of hemlock and pine. This study confirms the importance of evaluating the potential for introduced biological control agents to hybridize with their native relatives. This system also provides an excellent opportunity to improve our understanding of emerging hybrid zones by tracking its progress over time.  相似文献   

12.
The loss of foundational tree species to non-native pests can have far reaching consequences for forest composition and function, yet little is known about the impacts on other ecosystem components such as wildlife. We had the opportunity to observe how the loss of eastern hemlock (Tsuga canadensis), due to the invasive hemlock woolly adelgid (Adelges tsugae), influenced the population ecology of the Black-throated Blue Warbler (Setophaga caerulescens) over a 7 year period. We followed the process of adelgid infestation and subsequent hemlock loss, which allowed us to investigate the patterns and mechanisms of population change. We document a precipitous decline in breeding pairs at one site where hemlock was most abundant in the understory, but not at our other two sites. We observed no changes in reproductive output or apparent survival, yet territory size increased dramatically at the most affected site, suggesting that the decline was due to a lack of colonization by new breeders. Our results demonstrate how an invasive insect pest can indirectly influence wildlife species not believed to be vulnerable and in ways not typically investigated.  相似文献   

13.
14.
Hemlocks are significant components of temperate forests of Asia and North America, and in eastern North America, they are threatened by an exotic herbivore, the hemlock woolly adelgid, Adelges tsugae. The adelgid is native to Asia and northwestern North America, but is highly invasive in eastern North America where natural enemies are unable to regulate populations and eastern hemlock, Tsuga canadensis, is highly susceptible. In order to gain a better understanding of the metabolic effects of A. tsugae on eastern hemlock, we evaluated its effects on photosynthesis and also evaluated photosynthesis on Tsuga species from various geographic origins. We measured light-saturated photosynthesis (A sat) and dark respiration of T. canadensis that were infested with adelgid and found a significant decrease in A sat and a small but significant increase in dark respiration, suggesting that A. tsugae triggers a physiological response in eastern hemlock by decreasing metabolic activity. In a separate experiment, we also measured A sat of five different hemlock species, including eastern hemlock, the Pacific Northwestern T. heterophylla and T. mertensiana, and the Asian T. diversifolia and T. chinensis. Only weakly significant differences in A sat were found, with the highest rate in the eastern North American T. canadensis and the lowest in the Pacific Northwestern T. mertensiana. The relatively high photosynthetic rate of T. canadensis could possibly play a role in its susceptibility to A. tsugae. A better understanding of this metabolic response could help develop effective management strategies for combating the highly invasive A. tsugae.  相似文献   

15.
Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non‐native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.  相似文献   

16.
Invasions by introduced pests can interact with other disturbances to alter forests and their functions, particularly when a dominant tree species declines. To identify changes after invasion by the insect hemlock woolly adelgid (Adelges tsugae; HWA), coinciding with severe droughts and hurricanes, this study compared tree species composition of eastern hemlock (Tsuga canadensis) forests on 11 plots before (2001) and 15 years after (2016) invasion in the southern Appalachian Mountains, USA. Losses of hemlock trees after HWA invasion were among the highest reported, with a 90% decline in density, 86% decline in basal area, and 100% mortality for individuals ≥ 60 cm in diameter. In contrast to predictions of theoretical models, deciduous tree density declined after HWA invasion, while basal area changed little, at least during the initial 15 years after invasion. Overall, forest density declined by 58%, basal area by 25%, and tree species richness by 8%. Factors additional to HWA likely exacerbating forest decline included: droughts before (1999–2001) and after HWA invasion (2006–2008); tree uprooting from hurricane-stimulated winds in 2004; pest-related declines of deciduous tree species otherwise likely benefitting from hemlock’s demise; death of deciduous trees when large hemlocks fell; and competition from aggressive understory plants including doghobble (Leucothoe fontanesiana), rosebay rhododendron (Rhododendron maximum), and Rubus spp. Models of forest change and ecosystem function should not assume that deciduous trees always increase during the first decades after HWA invasion.  相似文献   

17.
Higher temperatures projected under current climate change models are generally predicted to exert an overall positive effect on the success of invasive insects through increased survivability, developmental rates and fecundity, and by facilitating geographic range expansion. However, these effects have primarily focused on the shifts in winter temperatures with limited attention to the role that summer heat may play in shaping species ranges or fitness. We examined the thermal ecology of an ecologically important invasive forest insect, the hemlock woolly adelgid (Adelges tsugae), by determining survival during its summer dormancy phase under increasing temperature regimens. From laboratory and field experiments, we documented a positive association between increased temperatures and duration of exposure, and A. tsugae mortality. Adelges tsugae mortality was minimal (<20%) when exposed to summer temperatures characteristic to its native range (<25 °C), but markedly increased (up to 100%) when exposed to temperatures that occur occasionally or rarely in natural settings (>30 °C). At the warmest, southernmost edge of their range, field mortality of A. tsugae ranged from 8.5 to 81.9% and was strongly correlated with site temperature regimens. Further, we found no significant differences in A. tsugae survival between populations collected from Maine and Georgia, and over a 3-year period within Georgia, indicating that A. tsugae may not be acclimating to heat. These results highlight the importance of including summer temperatures in studies regarding increased temperatures on insect dynamics, and may alter historical predictions of climate change impacts on invasive insects and the conservation of forest ecosystems.  相似文献   

18.
1. Interactions between invertebrate herbivores with different feeding modes are common on long-lived woody plants. In cases where one herbivore facilitates the success of another, the consequences for their shared host plant may be severe. Eastern hemlock (Tsuga canadensis), a canopy-dominant conifer native to the eastern U.S., is currently threatened with extirpation by the invasive stylet-feeding hemlock woolly adelgid (Adelges tsugae). The effect of adelgid on invasive hemlock-feeding folivores remains unknown. 2. This study evaluated the impact of feeding by hemlock woolly adelgid on gypsy moth (Lymantria dispar) larval preference for, and performance on, eastern hemlock. To assess preference, 245 field-grown hemlocks were surveyed for gypsy moth herbivory damage and laboratory paired-choice bioassays were conducted. To assess performance, gypsy moth larvae were reared to pupation on adelgid-infested or uninfested hemlock foliage, and pupal weight, proportional weight gain, and larval period were analysed. 3. Adelgid-infested hemlocks experienced more gypsy moth herbivory than did uninfested control trees, and laboratory tests confirmed that gypsy moth larvae preferentially feed on adelgid-infested hemlock foliage. Gypsy moth larvae reared to pupation on adelgid-infested foliage gained more weight than larvae reared on uninfested control foliage. 4. These results suggest that the synergistic effect of adelgid and gypsy moth poses an additional threat to eastern hemlock that may increase extirpation risk and ecological impact throughout most of its range.  相似文献   

19.

Key message

Embryogenic cultures of eastern and Carolina hemlocks could be initiated, and somatic embryos and plantlets produced using standard conifer protocols and media. Embryogenic hemlock cultures were cryostored and recovered.

Abstract

Eastern hemlock (Tsuga canadenesis) and Carolina hemlock (Tsuga caroliniana) are threatened with extirpation from their native ranges in eastern North America by the introduction of the hemlock woolly adelgid (HWA; Adelges tsugae), an exotic insect pest that has already killed millions of hemlock trees. Efforts to conserve and restore these members of the Pinaceae could be greatly enhanced by the availability of an in vitro propagation system. We conducted experiments to initiate embryogenic cultures from eastern and Carolina hemlock zygotic embryos at different stages of development using three media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-Benzylaminopurine (BA). Cone collection date, medium and source tree had significant effects on induction of embryogenic tissue from zygotic embryo explants of both species, which ranged as high as 52 % for eastern hemlock and 17 % for Carolina hemlock. Embryogenic hemlock cultures could be cryostored using a protocol employing sorbitol and DMSO, and recovered following several months of frozen storage. Transfer of embryogenic tissue from proliferation media containing 2, 4-D and BA to a Litvay medium with abscisic acid promoted the development of somatic embryos, which were stimulated to mature by slow drying under semi-permeable plastic film. Embryos moved to an imbibition-germination medium without plant growth regulators and incubated in the light elongated and subsequently germinated. A small number of germinated embryos survived transfer to ex vitro conditions and grew into somatic seedlings. The embryogenesis and cryostorage systems developed in the study are already being integrated with hemlock breeding efforts to develop clones with resistance or tolerance to HWA.  相似文献   

20.
Simple population models predict that the spread of an invading species through a homogenous habitat should be equal in all directions, but geographic variation in the habitat that affects either reproduction or movement could result in variable rates of spread. We analyse records of the historical range expansion of the hemlock woolly adelgid (HWA) (Adelges tsugae Annand) in the eastern United States from 1951 to 2006 to document that this species has spread in an anisotropic fashion. Furthermore, the magnitude and direction of this anisotropy has varied through time. We explore the extent to which this spatial and temporal variation in spread can be explained by geographical variation in climate and by the abundance of hosts, eastern hemlock (Tsuga canadensis L.) and Carolina hemlock (Tsuga caroliniana Engelm.). We found that a significant component of the spatial anisotropy in HWA spread rate can be explained by the geographical distribution of host trees. January temperatures were negatively associated with spread rates but this may be an artifact of the association between hemlock and cold climates. The current distribution of the adelgid in eastern N. America may be approaching the extent of its potential range to the south and west determined by availability of host hemlock and to the north determined by lethal cold winter temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号