首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Single strands of very short PCR products can be covalently immobilized to a slide and then easily detected by probe hybridization. In this work, the PCR product was a 70-nucleotide segment of ancient DNA, representing a portion of repeat mini-circle DNA from the kinetoplast of Trypanosoma cruzi, the infectious agent of Chagas' disease (American Trypanosomiasis). The target segment was initially established to be present in soft tissue samples taken from four "naturally" mummified Andean bodies using PCR followed by cloning and sequencing. Hybridization screening of the covalently immobilized PCR products positively identified products from 25 of 27 specimens of different tissues from these four mummies. The method appears to be ideal for the purpose of screening a large number of specimens when the target PCR product is very short.  相似文献   

2.
It is important to clarify the distribution of infected triatomine bugs in the endemic area of Chagas' disease for proper control. In the present study, we tried to detect T. cruzi kinetoplast DNA by PCR from dried triatomine feces collected from the house wall of an endemic area to assess the distribution of infected bugs more easily. The primers (P35/P36) were chosen to amplify the conserved region within the minirepeats of T. cruzi kinetoplast minicircle DNA. The kinetoplast DNA of T. cruzi could be actually detected in the dried feces collected from the wall of a brick-built house in Santa Cruz, Bolivia. Next, we examined the stability of T. cruzi kinetoplast DNA in the feces exposed to artificial environments. T. cruzi DNA was also detected by PCR in the feces left for 26 weeks at 25 degrees C and in those left for 4 weeks at 40 degrees C. The present study indicates that examination of dried feces on the wall can be an effective tool for surveillance of the natural infection of triatomine bugs that live in houses.  相似文献   

3.
4.
5.
Ninety-one Chilean, 15 Bolivian, and 9 Argentinian Trypanosoma cruzi stocks, isolated from various hosts and vectors, were characterized by schizodeme analysis with EcoRI and MspI endonucleases. The three major similar pattern groups that emerged from this sample correlated with results of isoenzyme analysis. This result confirms previous work and supports the hypothesis of the clonal structure of natural populations of T. cruzi, fully defined at the level of isoenzyme analysis, quantitative kinetoplast DNA restriction fragment length polymorphism, and kinetoplast DNA hybridization analysis. In Chile, sylvatic and domestic cycles of T. cruzi transmission appear to be mainly independent: genetically different families of natural clones are specific to these cycles. Nevertheless, the possibility of overlap remains unclear. Results described here indicate that natural clones inhabiting Chilean regions appear genetically related to the natural clones identified in neighboring countries. In Chile the more frequently sampled parasite types are natural clone 39 and a genetically closely related clone NP13. In this work an evaluation of T. cruzi natural clone mixtures in T. cruzi stocks from Chile was performed for the first time by schizodeme analysis before and after serial transfer in mouse maintenance. The results indicate that six of nine stocks are composed of two or more natural clones. This observation raises the relevant question of whether specific T. cruzi natural clones generate different clinical features of Chagas' disease.  相似文献   

6.
Eight kinetoplast DNA samples from very different T. cruzi zymodemes were digested with the isoschizomer group of enzymes (MspI-HpaII) and (MboI-Sau 3AI), able to detect DNA methylation on cytidine and adenine for the CCGG and GATC sequences, respectively. Restriction digestion analysis of each kDNA with both isoschizomer groups of enzymes did not display a different profile suggesting that maxicircles and minicircles on this trypanosomatid are not methylated.  相似文献   

7.
Horizontal gene transfer involving kinetoplast DNA minicircles between Trypanosoma cruzi and its mammalian hosts has recently been proposed as a usual consequence of infection (Hecht et al., 2010). However, we have found no sequences longer than 29 bp perfectly matching minicircles of T. cruzi in the unassembled reads from Colombian and Peruvian human populations provided by the 1,000 Genome project (129 individuals in total, coverage from 1.4× to 36.3×, read length from 42 to 101 bp). The weak sequence matches that were identified are shared with a Finnish population used as a control from a non-endemic area.  相似文献   

8.
Upon centrifugation of gently lysed T. cruzi cells through a sucrose gradient, a free DNA fraction was shown to contain catenated dimers and knotted DNA structures. Southern hybridization and electron microscopic studies indicated that both of these structures derived from minicircle DNA, the major component of T. cruzi kinetoplast DNA. Partial denaturation analysis of a random population of catenated dimers suggests that these structures may have arisen from a late stage in the replication of minicircle DNA. On the other hand, the T. cruzi knotted minicircles we have isolated appear to be very similar to trefoil structures recently reported and implicated as replicative intermediates in two other trypanosoma species.  相似文献   

9.
A 1.3 kb cDNA (cDNA52) was derived from Trypanosoma cruzi trypomastigote mRNA. Using single stranded probes in Northern blots, we identified the putative coding strand of cDNA52. In addition, a minor band was detected in RNA from epimastigotes that was absent in RNA from trypomastigotes. Nucleotide sequence analysis revealed that cDNA52 was highly homologous to T. cruzi kinetoplast DNA minicircle sequences. All four conserved regions of T. cruzi minicircles were identified in cDNA52. Using several criteria, we demonstrated that the hybridization signals were not caused by contaminating minicircle DNA in the RNA preparations. The data provide direct evidence for the unprecedented finding that the entire length of a kDNA minicircle is transcribed in T. cruzi.  相似文献   

10.
The kinetoplast DNA networks of Trypanosoma cruzi exist under two forms which have been studied by equilibrium density centrifugation in CsCl gradients containing ethidium bromide and by band sedimentation analysis. The relative proportion of the two forms has been measured and varies significantly between the exponential and stationary phase of growth, suggesting that one of these forms is a replicative intermediate. Both forms exhibit very high sedimentation coefficients. The sedimentation velocity ethidium titration was used to measure the superhelix density of the kinetoplast DNA after having established the validity of the method with in vitro closed DNA networks. The superhelix density of the native form of the kinetoplast DNA minicircles is very low and varies according to the physiological state of the trypanosomes. Furthermore, we observed a significant increase of the superhelix density of the kinetoplast DNA of trypanosomes grown in the presence of ethidium.  相似文献   

11.
We demonstrate the genetic transfer of DNA between eukaryotes from different kingdoms. The mitochondrial kinetoplast DNA (kDNA) of the intracellular parasite Trypanosoma cruzi is transferred to human patients with Chagas disease. This transfer was reproduced experimentally in rabbits and chickens. The kDNA is integrated into the host genome. In the human chromosomes, five loci were identified as integration sites, and the beta-globin locus and LINE-1 retrotransposons were frequently targeted. Short repeated sequences in the parasite and the target host DNAs favor kDNA integration by homologous recombination. Introduced kDNA was present in offspring of chronically infected rabbits and in chickens hatched from T. cruzi-inoculated eggs. kDNA incorporated into the chicken germline was inherited through the F2 generation in the absence of persistent infection. kDNA integration represents a potential cause for the autoimmune response that develops in a percentage of chronic Chagas patients, which can now be approached experimentally.  相似文献   

12.
ABSTRACT. Total or kinetoplast DNA (kDNA) from 72 isolates and clones of Trypanosoma cruzi as well as from nine related trypanosomatids were analyzed by dot hybridization using nonradioactive kDNA or cloned minicircle fragments as probes. Biotinylated-kDNA probes generated by nick-translation proved reliable for distinguishing Zymodeme 1 and Zymodeme 2bol of T. cruzi parasites. In contrast, digoxigenin-labeled kDNA obtained by random-priming did not distinguish among T. cruzi isolates but did distinguish among New World leishmanias. Cloned minicircle fragments labeled with digoxigenin gave the same results as digoxigenin-labeled kDNA, except for a 10-fold decrease in sensitivity. Digoxigenin-labeled DNA probes proved useful in unambiguously detecting T. cruzi from different geographic regions of America. However, T. rangeli and T. cruzi marinkellei were not distinguished by these probes.  相似文献   

13.
Total or kinetoplast DNA (kDNA) from 72 isolates and clones of Trypanosoma cruzi as well as from nine related trypanosomatids were analyzed by dot hybridization using nonradioactive kDNA or cloned minicircle fragments as probes. Biotinylated-kDNA probes generated by nick-translation proved reliable for distinguishing Zymodeme 1 and Zymodeme 2bol of T. cruzi parasites. In contrast, digoxigenin-labeled kDNA obtained by random-priming did not distinguish among T. cruzi isolates but did distinguish among New World leishmanias. Cloned minicircle fragments labeled with digoxigenin gave the same results as digoxigenin-labeled kDNA, except for a 10-fold decrease in sensitivity. Digoxigenin-labeled DNA probes proved useful in unambiguously detecting T. cruzi from different geographic regions of America. However, T. rangeli and T. cruzi marinkellei were not distinguished by these probes.  相似文献   

14.
Total DNA/organism was determined by flow cytometry on stocks of 33 single-cell-isolate clones and one strain of mithramycin-stained Trypanosoma cruzi. Interstrain differences in mean total DNA/group of 34% and interclone differences in total DNA/organism of 41% were found. Microspectrofluorometric analyses of the trypomastigote stage of selected clones confirmed the flow cytometry data and indicated that the total DNA/organism differences were due to differences in DNA of both the nucleus and kinetoplast with the nucleus being the major contributing factor. These data imply that the potential for genetic diversity in T. cruzi may be very large.  相似文献   

15.
Trypanosoma rangeli can infect humans as well as the same domestic and wild animals and triatomine vectors infected by Trypanosoma cruzi in Central and South America. This overlapping distribution complicates the epidemiology of American trypanosomiasis due to the cross-reactivity between T. rangeli and T. cruzi antigens and the presence of conserved DNA sequences in these parasites. We have isolated a T. rangeli-specific DNA repetitive element which is represented in approximately 103 copies per parasite genome and is distributed in several chromosomal bands. The 542-bp nucleotide sequence of this element, named P542, was determined and a PCR assay was standardized for its amplification. The sensitivity of the assay is high, allowing the detection of one tenth of the DNA content of a single parasite. The presence of the P542 element was confirmed in 11 T. rangeli isolates from mammalian hosts and insect vectors originating from several countries in Latin America. Negative amplification was observed with different T. cruzi strains and other trypanosomatids. The potential field application of the P542 PCR assay was investigated in simulated samples containing T. rangeli and/or T. cruzi and intestinal tract and feces of Rhodnius prolixus. Epidemiological studies were conducted in DNA preparations obtained from the digestive tracts of 12 Rhodnius colombiensis insects collected in a sylvatic area in Colombia. Positive amplification of the P542 element was obtained in 9/12 insects. We have also compared in the same samples the diagnostic performance of two PCR assays for the amplification of the variable domain of minicircle kinetoplast DNA (kDNA) and of the large subunit (LSU) of the ribosomal RNA gene of T. cruzi and T. rangeli. Data indicate that the kDNA PCR assay does not allow diagnosis of mixed infections in most insects. On the other hand, the PCR assay of the LSU RNA gene showed lower sensitivity in the detection of T. rangeli than the PCR assay of the P542 element. It is predicted that the use of sensitive detection techniques will indicate that the actual distribution of T. rangeli in America is wider than presumed.  相似文献   

16.
Abstract The detection of Trypanosoma cruzi kinetoplast DNA by polymerase chain reaction (PCR) amplification is a potentially powerful tool for the parasitological diagnosis of Chagas' disease. We have applied this technique in a field situation in Bolivia, where 45 children from a primary school were subjected to serological testing, buffy coat analysis and PCR diagnosis. 26 of the 28 serology-positive individuals were also positive by PCR. In addition, two serology-negative children gave a positive result by PCR, including one who was positive in the buffy coat test. These results suggest that PCR detection of T. cruzi DNA in blood can be a very useful complement to serology in Chagas' disease diagnosis in Bolivia.  相似文献   

17.
Flow cytometry and DNA binding-specific fluorescent reagents were used to compare the total DNA, G-C, and A-T content of the epimastigote and trypomastigote stages of Trypanosoma cruzi stocks. Significant total DNA differences of 2-12% between epimastigotes and trypomastigotes were found in three of six stocks studied. The epimastigote G-C content of five of six stocks was 4-8% higher than trypomastigotes, whereas the trypomastigote A-T content was 2.5-13% higher than the epimastigote A-T content. Although no obvious developmental stage association between total DNA and base composition was found, intrastage associations do exist. These observations were unaffected by nucleoprotein extraction implying that the observed differences between trypomastigotes and epimastigotes are not a consequence of nucleoprotein interference with DNA-binding fluorochromes. The nuclei and kinetoplasts of four T. cruzi stocks were isolated and analyzed. Developmental stage differences in nuclear and kinetoplast DNA are stock-dependent and base composition-dependent; both organelles contribute to the observed differences in DNA of intact cells. We found a nearly linear association between the percentage of total kinetoplast DNA, G-C, and A-T content. During metacyclogenesis, the G-C content decreases by approximately 7% as epimastigotes transform into metacyclic trypomastigotes. The decrease in G-C content precedes changes in morphology or in complement resistance. If the DNA changes are causally connected to developmental stage transformations in T. cruzi remains to be determined. However, our results could facilitate studies of the molecular genetic processes the parasite uses to successfully complete various phases of its life cycle and, consequently, the disease process it evokes.  相似文献   

18.
A novel DNA-topoisomerase from Trypanosoma cruzi was partially purified. The enzyme, without ATP addition, catalyzes decatenation of kinetoplast DNA, catenation of circular supercoiled DNAs and unknotting of P4 phage DNA. The presence of Mg++ is required as well as a suitable concentration of KCl. In stoichiometric conditions the trypanosome enzyme induces double-strand DNA cleavage. The reaction is highly stimulated by some chemicals. Such characteristics allow to include this enzyme into the type II class of DNA-topoisomerases.  相似文献   

19.
A 410 base-pair (bp) Sau3A restriction fragment derived from a Leishmania tarentolae kinetoplast DNA minicircle, which is known to have slower than expected electrophoretic mobilities in polyacrylamide gels, has been cloned in a plasmid and deletions from one end of the cloned segment have been constructed. Analysis of the gel electrophoretic mobility data of a large number of restriction fragments derived from the kinetoplast DNA clone and its deletion subclones has led to the conclusion that two sequences, one in the region bp 100 to 170 and the other bp 190 to 250, both numbered from one end of the 410 bp kinetoplast DNA segment, are important for the abnormal gel electrophoretic behavior of the kinetoplast DNA fragment. One common feature of these sequences is the periodic presence of short runs of A residues (3 to 6 As in each); auto-correlation analysis of these runs of A residues shows a strong harmonic component with a period around 11 bp. These results support and extend the previous analysis of Wu & Crothers (1984). The abnormal electrophoretic behavior is accentuated at low temperature and by the addition of Mg2+ to the electrophoresis buffer; addition of Na+ has the opposite effect. Insertion of sequences derived from the kinetoplast DNA fragment into nicked circular DNA causes no unexpected change in its electrophoretic mobility in agarose gel, suggesting that the 410 bp sequence, or segments of it, has no significant spatial writhe. Abnormal shifts in agarose gel mobilities are observed, however, when certain segments of the kinetoplast DNA are inserted into positively or negatively supercoiled DNA topoisomers. These results are consistent with a bent structure of the kinetoplast DNA in which the bend has zero writhe in its undistorted form but is easily distorted.  相似文献   

20.
Flow cytometry and DNA binding-specific fluorescent reagents were used to compare the total DNA, G-C, and A-T content of the epimastigote and trypomastigote stages of Trypanosoma cruzi stocks. Significant total DNA differences of 2–12% between epimastigotes and trypomastigotes were found in three of six stocks studied. The epimastigote G-C content of five of six stocks was 4–8% higher than trypomastigotes, whereas the trypomastigote A-T content was 2.5–13% higher than the epimastigote A-T content. Although no obvious developmental stage association between total DNA and base composition was found, intrastage associations do exist. These observations were unaffected by nucleoprotein extraction implying that the observed differences between trypomastigotes and epimastigotes are not a consequence of nucleoprotein interference with DNA-binding fluorochromes. The nuclei and kinetoplasts of four T. cruzi stocks were isolated and analyzed. Developmental stage differences in nuclear and kinetoplast DNA are stock-dependent and base composition-dependent; both organelles contribute to the observed differences in DNA of intact cells. We found a nearly linear association between the percentage of total kinetoplast DNA, G-C, and A-T content. During metacyclogenesis, the G-C content decreases by approximately 7% as epimastigotes transform into metacyclic trypomastigotes. The decrease in G-C content precedes changes in morphology or in complement resistance. If the DNA changes are causally connected to developmental stage transformations in T. cruzi remains to be determined. However, our results could facilitate studies of the molecular genetic processes the parasite uses to successfully complete various phases of its life cycle and, consequently, the disease process it evokes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号