首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We compared the virulence of the entomopathogenic nematodes Steinernema scarabaei, Heterorhabditis zealandica, and Heterorhabditis bacteriophora (GPS11 and TF strains) against third instars of the Japanese beetle, Popillia japonica, the oriental beetle, Anomala (=Exomala) orientalis, the northern masked chafer, Cyclocephala borealis, the European chafer, Rhizotrogus majalis, and the Asiatic garden beetle, Maladera castanea, in laboratory and greenhouse experiments. The virulence of the nematode species relative to each other differed greatly among white grub species. H. bacteriophora and H. zealandica had similar modest virulence to P. japonica, A. orientalis, C. borealis, and M. castanea. But against R. majalis, H. zealandica showed low virulence with a clear concentration response whereas H. bacteriophora caused only erratic and very low mortality. In contrast, S. scarabaei had modest virulence against C. borealis, but was highly virulent against R. majalis, P. japonica, A. orientalis, and M. castanea with R. majalis being the most susceptible and M. castanea the least susceptible.  相似文献   

2.
Entomopathogenic nematodes and the chloronicotinyl insecticide, imidacloprid, interact synergistically on the mortality of third-instar white grubs (Coleoptera: Scarabaeidae). The degree of interaction, however, varies with nematode species, being synergistic for Steinernema glaseri (Steiner) and Heterorhabditis bacteriophora Poinar, but only additive for Steinernema kushidai Mamiya. The mechanism of the interaction between imidacloprid and these three entomopathogenic nematodes was studied in the laboratory. In vials with soil and grass, mortality, speed of kill, and nematode establishment were negatively affected by imidacloprid with S. kushidai but positively affected with S. glaseri and H. bacteriophora. In all other experiments, imidacloprid had a similar effect for all three nematode species on various factors important for the successful nematode infection in white grubs. Nematode attraction to grubs was not affected by imidacloprid treatment of the grubs. Establishment of intra-hemocoelically injected nematodes was always higher in imidacloprid-treated grubs but the differences were small and in most cases not significant. The major factor responsible for synergistic interactions between imidacloprid and entomopathogenic nematodes appears to be the general disruption of normal nerve function due to imidacloprid resulting in drastically reduced activity of the grubs. This sluggishness facilitates host attachment of infective juvenile nematodes. Grooming and evasive behavior in response to nematode attack was also reduced in imidacloprid-treated grubs. The degree to which different white grub species responded to entomopathogenic nematode attack varied considerably. Untreated Popillia japonica Newman (Coleoptera: Scarabaeidae) grubs were the most responsive to nematode attack among the species tested. Untreated Cyclocephala borealis Arrow (Coleoptera: Scarabaeidae) grubs showed a weaker grooming and no evasion response, and untreated C. hirta LeConte (Coleoptera: Scarabaeidae) grubs showed no significant response. Chewing/biting behavior was significantly increased in the presence of nematodes in untreated P. japonica and C. borealis but not in C. hirta and imidacloprid-treated P. japonica and C. borealis. Our observations, however, did not provide an explanation for the lack of synergism between imidacloprid and S. kushidai.  相似文献   

3.
Effect of neonicotinoid synergists on entomopathogenic nematode fitness   总被引:1,自引:0,他引:1  
In previous greenhouse and field studies, the neonicotinoid insecticide imidacloprid interacted synergistically with five entomopathogenic nematode species against five scarab species. Two other neonicotinoids, thiamethoxam and acetamiprid, showed a weaker interaction with nematodes in scarab larvae. Entomopathogenic nematodes have the potential to recycle in hosts after inundative applications, thereby increasing the persistence of nematodes and insect control. Thus we investigated the effect of neonicotinoids on nematode fitness after tank mixing and after combined applications. Tank mixing only had a negative effect on nematode survival and infectivity in a few nematode–insecticide combinations and only if both insecticide concentration and exposure time were several times higher than typical for field applications. Combined application of nematodes with imidacloprid generally had no negative effect on the percentage of scarab cadavers producing progeny or the number of nematode progeny emerging per cadaver. In experiments with a synergistic increase in scarab mortality, the total number of progeny in combination treatments was up to four times higher than in nematodes only treatments. Similarly, nematode populations in soil from combination treatments were 13.2 times greater than for nematodes only treatments at 28 days after treatment. Combined imidacloprid–nematode applications did not affect the pathogenicity or infectivity of the nematode progeny. Combining thiamethoxam with nematodes had no negative effects on nematode reproduction in the majority of treatments. However, due to the weaker interaction of thiamethoxam and nematodes on scarab mortality, the total number of nematode progeny per treatment generally did not increase compared with nematodes only treatments. The demonstrated tank mix compatibility of imidacloprid and nematodes improves the feasibility of combining these agents for curative white grub control. The positive effect of imidacloprid on nematode reproduction after combined application may increase the likelihood of infection of white grubs by subsequent generations of nematodes, thereby improving their field persistence and biological control potential.  相似文献   

4.
Synergistic combinations of biological and chemical insecticides might yield promising alternatives for soil insect pest management. In turfgrass of the Northeast U.S., control of root-feeding scarab larvae is highly dependent on conventional insecticides. Studies on interactions between entomopathogenic nematodes and neonicotinoid insecticides, however, demonstrate the feasibility of synergies as an approach for reduced-risk curative control. To understand the breadth of potential synergies, we screened numerous combinations of biological control agents with sublethal doses of neonicotinoids against third instars. Interactions were characterized as synergistic, additive or antagonistic. The most promising combinations identified in laboratory bioassays were advanced to greenhouse pot studies and then to field trials featuring microplots with artificially infested populations. To reveal variation across scarab species, trials were conducted on Amphimallon majale and Popillia japonica. Synergies were consistent across trials and specific to white grub species. For A. majale, synergistic combinations of Heterorhabditis bacteriophora with imidacloprid and clothianidin were discernible in laboratory, greenhouse and field trials. For P. japonica, synergistic combinations of Beauveria bassiana and Metarhizium anisopliae with both neonicotinoids were discernible in the laboratory and greenhouse, but not in the field. For both species, antagonistic interactions were discernible between Bt-products and both neonicotinoids. While nematode-neonicotinoid synergies among scarab larvae have been examined before, fungi-neonicotinoid synergies are unreported. In the context of previous studies, however, no patterns emerge to explain variation across target species or control agent. Further study of non-additive interactions will guide how biological and chemical products could be combined to enhance soil insect pest management.  相似文献   

5.
The scarab beetle Popillia japonica, a pest native to northern Japan, has been recently found in Italy. Entomopathogenic nematodes are useful for biological control of this invasive insect. Previous work showed that 1st and 2nd larval stages are more susceptible to nematodes than 3rd instars. We tested the effectiveness of Heterorhabditis bacteriophora in the laboratory against P. japonica 3rd instars. Experiments were conducted in Italy with larvae field collected in the fall, winter and spring, showing a significant decrease in effectiveness from the fall to spring.  相似文献   

6.
As a first step towards the development of an ecologically rational control strategy against western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) in Europe, we compared the susceptibility of the soil living larvae and pupae of this maize pest to infection by three entomopathogenic nematode (EPN) species. In laboratory assays using sand-filled trays, Heterorhabditis bacteriophora Poinar and H. megidis Poinar, Jackson & Klein (both Rhabditida: Heterorhabditidae) caused comparable mortality among all three larval instars and pupae of D. v. virgifera. In soil-filled trays, H. bacteriophora was slightly more effective against third larval instars and pupae, and H. megidis against third larval instars, compared to other developmental stages. In both sand and soil, Steinernema feltiae (Filipjev) (Rh.: Steinernematidae) was least effective against second instars. In conclusion, all larval instars of D. v. virgifera show susceptibility to infection by all three nematodes tested. It is predicted that early application against young larval instars would be most effective at preventing root feeding damage by D. v. virgifera. Applications of nematodes just before or during the time period when third instars are predominant in the field are likely to increase control efficacy. According to our laboratory assays, H. bacteriophora and H. megidis appear to be the most promising candidates for testing in the field. I. Hiltpold similarly contributed to this paper as the first author.  相似文献   

7.
Four entomopathogenic nematode (EPN) species (Heterorhabditis bacteriophora Poinar, Heterorhabditis megidis Poinar, Jackson & Klein, Steinernema feltiae Filipjev and Steinernema riobrave Cabanillas, Poinar & Raulston) were tested for virulence against 3rd instar southern masked chafer white grubs, Cyclocephala lurida Bland. H. bacteriophora and H. megidis, being the most virulent, were selected to evaluate the interaction with an entomopathogenic fungus (EPF), Beauveria bassiana (Balsamo) Vuillemin strain GHA or Metarhizium anisopliae (Metsch.) Sorokin strain F-52, under laboratory and greenhouse conditions. Nematodes and fungi were either applied alone or in combination, with nematodes added to fungi at different times. When applied alone, B. bassiana and M. anisopliae did not reduce grub numbers. Under laboratory conditions, additive interactions were found between H. megidis and B. bassiana, and between H. bacteriophora and B. bassiana or M. anisopliae in most combinations against chafer grubs; a few treatments showed synergism or antagonism. The combined effect did not differ significantly for nematode and fungal applications made simultaneously or at different times. Nematode infection and infective juveniles (IJs) production in grub carcasses were not significantly affected by the presence of a fungus. Efficacies of H. bacteriophora and M. anisopliae were affected by temperature, with grub mortality increasing at higher temperatures. Under greenhouse conditions, additive or synergistic interaction was found between H. bacteriophora and B. bassiana or M. anisopliae in different formulations in simultaneous applications or when the nematode was applied 4 weeks after the fungi, except between B. bassiana ES and H. bacteriophora. The impact of H. bacteriophora alone or in combination with M. anisopliae or B. bassiana on 3rd instar C. lurida was comparable to that of an imidacloprid insecticide used as curative applications. More virulent fungal strains or species may be required to achieve a stronger interaction with nematodes in the management of C. lurida.  相似文献   

8.
The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm2); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm2 on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.  相似文献   

9.
Invasive, non-native, white grubs (Coleoptera: Scarabaeidae) cause significant damage in urban landscapes. Although the lack of natural enemies in their new home is often suggested as an important factor in the establishment and spread of invasive species, the potential of incumbent generalist parasites and pathogens to delay their establishment and spread has not been explored. We compared the susceptibility of the introduced Popillia japonica and the native Cyclocephala borealis to 16 species and strains of entomopathogenic nematodes isolated from within or outside the geographic ranges of the two scarabs. We found large variation in the virulence of the species/strains of nematodes with over 50% mortality of P. japonica produced by Heterorhabditis zealandica strain X1 and H. bacteriophora strain GPS11 and of C. borealis by H. zealandica and H. bacteriophora strains KMD10 and NC1. Heterorhabditis indica and H. marelatus caused less than 20% mortality of both scarab species. When considered as a group the nematode species and strains from within and outside the geographic ranges of either P. japonica or C. borealis did not differ in virulence towards either scarab species. Dose response studies with selected nematode species and strains against P. japonica and two additional non-native species Anomala (Exomala) orientalis and Rhizotrogus majalis and the native C. borealis indicated that R. majalis was the least susceptible and P. japonica and A. orientalis were as susceptible as the native C. borealis. Heterorhabditis zealandica was significantly more virulent than any other species or strain against P. japonica with a LC50 of 272 IJs/grub. The LC30 and LC50 values for H. zealandica were also the lowest among the four nematode species/strains tested against A. orientalis and C. borealis. The LC50 values for H. zealandica and H. megidis (UK strain) were significantly lower for the native C. borealis than the introduced A. orientalis. H. zealandica also showed the highest penetration efficiency and the lowest encapsulation in P. japonica and C. borealis grubs. Results suggest that the introduction of the exotic H. zealandica into the front-line states with respect to the movement of P. japonica and A. orientalis should be explored as a tactic to delay their establishment and spread. The results also suggest that the manipulation of the indigenous H. bacteriophora populations may help in delaying spread and mitigating losses caused by the invasive grub species.  相似文献   

10.
Field and laboratory tests were conducted from 2001 through 2007 to assess the effectiveness of entomopathogenic nematode Heterorhabditis bacteriophora strain GPS11 applications targeted against different instars of the Japanese beetle, Popillia japonica. During summer flight, P. japonica adults were trapped and caged on turfgrass plots for oviposition. Larval development was monitored for the occurrence of each instar. Nematodes were applied in the field against each developing instar at 2.5 × 109 infective juveniles/ha. In 2001, field data obtained in October resulted in 75%, 53%, and 33% control with the applications targeted against the first, second, and third instars, 69, 28, and 9 days after treatment (DAT), respectively. In 2002 field trial, data obtained in October indicated 97%, 88%, and 0% control when the applications were targeted against the first, second, and third instars at 66, 43, and 14 DAT, respectively. Additional plots established in 2002 to determine efficacy against each instar at 14 DAT showed control of the first, second, and third instars to be 55%, 53%, and 0%, respectively. In laboratory tests conducted in 2002, 2004, and 2007, P. japonica collected from the field at the occurrence of each instar were exposed to H. bacteriophora at concentrations of 0, 10, 33, 100, 330, or 1000 infective juveniles/grub. Probit analysis of the mortality from three of the four sets of tests conducted showed the first instar to be significantly more susceptible to H. bacteriophora than the third instar at the LC50 level and all tests showed the first instar to be significantly more susceptible than the third instar at the LC90 level. In addition to the observed decrease in the third instar susceptibility to H. bacteriophora, soil temperatures in the mid-western United States during late September and October rapidly decline often reaching below 15 °C by the beginning of October when grubs are in the third instar stage of development. Therefore, we conclude that the applications of the nematodes made in August or September will provide higher control than those made in October, due to the more appropriate temperature for nematode activity and the presence of more susceptible larval stages. Early nematode applications may also provide an opportunity for nematodes to recycle and cause secondary infections.  相似文献   

11.
We tested the effect of host density on entomopathogenic nematode efficacy in 1-L pots with grass and soil. In four experiments, combinations ranged from somewhat resistant hosts (oriental beetle, Anomala orientalis, or northern masked chafer, Cyclocephala borealis, with Heterorhabditis bacteriophora) over more susceptible hosts (Japanese beetle, Popillia japonica, with Steinernema glaseri) to a highly susceptible host (P. japonica and S. scarabaei). In each experiment, four larval densities were exposed to two nematode rates over a 14-day period. A significant effect of host density on nematode efficacy occurred only in the A. orientalis–H. bacteriophora combination, but there was no clear trend in the data. This suggests that an exhaustion of available nematode populations to less lethal levels by high host numbers was counteracted by other factors such as increased chances for nematode-host contact and increased host susceptibility due to stress via reduced food resources and increased aggression between larvae.  相似文献   

12.
In laboratory and greenhouse studies, the invading ability, virulence, and mortality caused by Stinernema feltiae and Heterorhabditis bacteriophora were compared. After one and two days of exposure to either nematode species, the mortality of Colordo potato beetle (CPB) Leptinotarsa decemlineata larvae at different instars, third and fourth, was recorded and the number of nematodes invading cadavers was more than the number of nematodes inside the larvae at the late last instar (one day before pre-pupa). Two concentrations, 250 and 500 IJs/dish, infective juvenile nematodes/0.5 ml were tested on different CPB larval instar. S. feltiae was more effective, with fourth instar rather than third and late last instar. On the other hand, H. bacteriophora showed a very weak effect with L. decemlineata. Also it was clear that S. feltiae was more effective and faster than H. bacteriophora: more than 70% of larvae were killed within 24 hours compared with H. bacteriophora which killed 40% of larvae within 48–72 hours. A significant difference in invading efficiency was observed with concentration 2500 IJs/pot in the greenhouse test. The number of adult females found in the cadavers of L. decemlineata larvae was always higher than the number of males. Foliage application of S. feltiae and H. bacteriophora resulted in a significant reduction of the number of damaged leaves and a lower index of damage compared with that in the control. We conclude that S. feltiae has significant potential and can help in the management of the Colorado potato beetle.  相似文献   

13.
A new entomopathogenic nematode species, Steinernema scarabaei, was evaluated for efficacy against two white grub species, the European chafer, Rhizotrogus majalis, and the Japanese beetle, Popillia japonica, in laboratory, greenhouse, and field trials. In laboratory assays, S. scarabaei caused greater mortality than Heterorhabditis bacteriophora. S. scarabaei was highly virulent with an LC50 of 5.5–6.0 and 5.7 infective juveniles (IJs) per third-instar larva in R. majalis and P. japonica, respectively. In a greenhouse trial, S. scarabaei provided greater mortality of R. majalis at all application rates (0.156–1.25 × 109 IJs/ha) than Steinernema glaseri and H. bacteriophora (both at 1.25 × 109 IJs/ha). Combination of imidacloprid and S. scarabaei resulted in an antagonistic interaction. In a fall field trial, S. scarabaei provided 88 and 75% control of R. majalis at 2.5 × 109 and 109 IJs/ha, respectively, and 54% control of P. japonica at 109 IJs/ha; H. bacteriophora had no effect on mortality of either white grub species. In a spring field trial, unusually cool temperatures impeded nematode activity. Against R. majalis, S. scarabaei provided moderate control (56–59%), whereas Heterorhabditis marelatus provided no control. Mortality of P. japonica was moderate (49–66%) in both S. scarabaei and H. marelatus treatments. Overwinter persistence of S. scarabaei activity was demonstrated in a spring assay of soil from fall treated plots in which nematode infection was absent from control plots and present in treated plots.  相似文献   

14.
Four entomopathogenic nematode species, Steinernema carpocapsae, S. feltiae, Heterorhabditis bacteriophoraand H. megidis, were tested in a petri dish assay against larvae and adults of the hairy fungus beetle Typhaea stercorea. In general, adults were less susceptible than larvae and the LC50 decreased with the duration of the exposure to nematodes. S. carpocapsae was the most effective species against adult beetles (LC50 after 96 hours exposure =67 nematodes/adult). Against larvae S.carpocapsae and H. megidis were comparablyeffective with an LC50 of 30 and 55nematodes/larvae, respectively. S. carpocapsaewas tested at 70 and 100% RH against adults in baits of either chicken feed or crushed wheat, both supplemented with horticultural capillary matting pieces in order to obtain a wet weight of 50–60%. At70% RH no significant effect of the nematodes was obtained due to desiccation of the bait. In chickenfeed at 100% RH the mortality reached 80% with 500nematodes/adult. In wheat significant mortality was obtained only at 5000 nematodes/adult. Heavy growth of mould probably limited the nematode infection. When the bait was used in tube traps, desiccation and growth of mould was prevented, but nematode efficacy dropped to 4.4% in the traps and 12% in the surrounding litter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Because susceptibility of white grub species to entomopathogenic nematodes differs, we compared the virulence of Photorhabdus temperata and Xenorhabdus koppenhoeferi, the symbiotic bacteria of the nematodes Heterorhabditis bacteriophora and Steinernema scarabaei, respectively, to the three white grub species, Popillia japonica, Rhizotrogus majalis, and Cyclocephala borealis. Both bacteria were pathogenic to all three grub species even at 2 cells/grub. However, the median lethal dose at 48 h post injection and median lethal time at 20 cells/grub showed that P. temperata was more virulent than X. koppenhoeferi to C. borealis. Although H. bacteriophora is less pathogenic than S. scarabaei to R. majalis and P. japonica, their symbiotic bacteria did not differ in virulence against these two grub species, and they also showed similar growth patterns both in vitro and inside R. majalis larvae at 20 °C. We then tested the pathogenicity of oral- and intrahemocoel-introduced H. bacteriophora to R. majalis to determine whether nematodes are able to successfully vector the bacteria into the hemolymph. Hemocoel injected H. bacteriophora was pathogenic to R. majalis indicating successful bacterial release, but orally introduced H. bacteriophora were not. Dissection of grubs confirmed that the orally introduced H. bacteriophora were unable to penetrate into the hemolymph through the gut wall. We conclude that the low susceptibility of R. majalis to H. bacteriophora is not due to the symbiotic bacteria but rather to the nematode’s poor ability to penetrate through the gut wall and the cuticle to vector the bacteria into the hemolymph.  相似文献   

16.
Seven different turfgrass species or mixes used on golf courses in the United States' transitional climatic zone were maintained as randomized and replicated plots in separate stands mowed at fairway (1.6 cm) or rough (6.4 cm) cutting heights and sampled in autumn to assess the density and species composition of scarab grubs; incidence of disease and parasitism thereof; and extent of turf damage from foraging insectivorous skunks, Mephitis mephitis. Influence of grass species on parasitism by spring or autumn-active tiphiid wasps was further assessed on implanted grubs in open enclosures. Masked chafers (Cyclocephala spp.) were three-fold more abundant than Japanese beetle, Popillia japonica Newman, grubs in plots of Zoysia and Cynodon sp. mowed at fairway height, and P. japonica were five-fold more abundant than masked chafer grubs in cool-season turf plots mowed at rough height. Phyllophaga spp. accounted for <1% of grubs in the samples. Milky disease bacteria (Paenibacillus sp.) were the predominant pathogens of Cyclocephala spp., followed by Serratia sp. bacteria and gregarines (Stictospora cf. villani). Cyclocephala grub densities, milky disease incidence (25%), and parasitism by the native tiphiid Tiphia pygidialis Alien (10-12%) were especially high in zoysiagrass. Japanese beetle grubs were infected by Paenibacillus, Serratia, Stictospora, and microsporidia (Ovavesicula sp.), but incidence of individual pathogens was relatively low (<6%) and similar among grasses within each stand. Few nematode-infected grubs were found. Skunk damage was mainly in the cool-season fairway-height grasses, probably reflecting difficulty in foraging in the much tougher stolons and rhizomes of the warm season turfgrasses. The degree of natural suppression of scarab grubs provided by endemic pathogens or parasitoids is unlikely to be compromised by the grass species used on a particular site.  相似文献   

17.
Three species of entomopathogenicnematodes, a combination of two nematodespecies, an entomopathogenic fungal species,and a combination of a nematode and fungalspecies were evaluated against the white grubsEctinohoplia rufipes and Exomalaorientalis (Coleoptera: Scarabaeidae) in the field. The nematodes were acommercial formulation of Steinernemacarpocapsae (BioSafe) and S. glaseri from Dongrae and from Hanrim, and Heterorhabditis bacteriophora from Hamyang,Republic of Korea. The entomopathogenic funguswas Beauveria brongniartii, produced onSabouraud maltose agar plus 1% yeast (SMAY),rice bran, or compost. The combinationtreatment was S. carpocapsae with H.bacteriophora or B. brongniartii. Fieldapplications were made in August or Septemberagainst third instars at a golf course infestedwith E. rufipes in Gyeongnam Province in1991, and one in Pusan with E. orientalisin 1992 and 1993. In 1991, a significantreduction of 70.2 to 79.4% of E. rufipeslarvae was observed in the nematode, fungal andchemical (fenitrothion) treatments comparedwith a 15.7% reduction in the control. In1992, the E. orientalis larval populationwas reduced between 62.7 and 82.8% in thetreatments compared to 10.7% in the control.In 1993, larval reductions in plots treatedwith nematodes (78.3 to 97%) and B.brongniartii propagated on rice bran (84.5%)were significantly better than in plots treatedwith B. brongniartii propagated on SMAY(63.6%) or compost (59.6%). Combining twonematode species did not enhance the efficacycompared to treatments with one nematodespecies alone, but combining S.carpocapsae with B. brongniartiiproduced on SMAY resulted in a significantincrease in grub mortality over the applicationof the fungus alone produced on SMAY orcompost. The high efficacy of the nematode andmost fungal treatments was attributed to theclose proximity of the white grubs to the soilsurface which allowed for excellentpathogen-host contact and to favorable soiltemperatures, sandy soil, post irrigationapplication and/or rain and a minimal thatchlayer in the turfgrass.  相似文献   

18.
Predation of the entomopathogenic nematode, Steinernema feltiae (Rhabditida: Steinernematidae), by Sancassania sp. (Acari: Acaridae) isolated from field-collected scarab larvae was examined under laboratory conditions. Adult female mites consumed more than 80% of the infective juvenile (IJ) stage of S. feltiae within 24 h. When S. feltiae IJs were exposed to the mites for 24 h and then exposed to Galleria mellonella (Lepidoptera: Pyralidae) larvae, the number of nematodes penetrating into the larvae was significantly lower compared to S. feltiae IJs that were not exposed to mites (control). Soil type significantly affected the predation rate of IJs by the mites. Mites preyed more on nematodes in sandy soil than in loamy soil. We also observed that the mites consumed more S. feltiae IJs than Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). No phoretic relationship was observed between mites and nematodes and the nematodes did not infect the mites.  相似文献   

19.
The susceptibility of pupating larvae of pollen beetles, Meligethes spp. Stephens (Coleoptera: Nitidulidae) and brassica pod midges, Dasyneura brassicae Winnertz (Diptera: Cecidomyidae) to entomopathogenic nematodes (Nematoda: Rhabditida) was studied in the laboratory. The results showed that brassica pod midge larvae were almost unaffected by the tested nematodes (Steinernema bicornutum, S. feltiae and Heterorhabditis bacteriophora) whereas successful pupation of pollen beetle larvae was reduced with increasing number of nematodes (S. bicornutum, S. carpocapsae, S. feltiae and H. bacteriophora). The exposed larvae had been collected in the field and some of the pollen beetle larvae were parasitised by parasitoid wasps. It appeared that parasitised larvae were less affected by nematodes than non-parasitised larvae.  相似文献   

20.
Insects form the most species‐rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode–insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle–nematode–bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five‐year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high‐throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate‐reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect‐associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate‐reducing bacteria suggests a possible link between beetle–bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号