首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria.  相似文献   

2.
Mucus hypersecretion associated with airway inflammation is reduced by glucocorticoids. Two mechanisms of glucocorticoid-mediated inhibition of mucus production have been proposed, direct inhibition of mucus production by airway epithelial cells and indirectly through inhibition of proinflammatory mediators that stimulate mucus production. In this study, we examined the effect of dexamethasone (DEX) on mRNA expression and synthesis of MUC5AC by A549 human lung adenocarcinoma cells as well as Muc5ac and total high-molecular-weight (HMW) mucins by primary rat tracheal surface epithelial (RTSE) cells. Our results showed that in primary RTSE cells, DEX 1) dose dependently suppressed Muc5ac mRNA levels, but the levels of cellular Muc5ac protein and HMW mucins were unaffected; 2) did not affect constitutive or UTP-stimulated mucin secretion; 3) enhanced the translation of Muc5ac; and 4) increased the stability of intracellular Muc5ac protein by a mechanism other than the inhibition of the proteasomal degradation. In A549 cells, however, DEX suppressed both MUC5AC mRNA levels and MUC5AC protein secretion in a dose-dependent manner. We conclude that whereas DEX inhibits the levels of Muc5ac mRNA in primary RTSE cells, the levels of Muc5ac protein remain unchanged as a consequence of increases in both translation and protein stability. Interestingly, some of the effects of DEX were opposite in a cell line.  相似文献   

3.
团头鲂黏蛋白基因Muc5b克隆及表达分析   总被引:1,自引:0,他引:1  
摘要:黏液(mucus)在鱼体防御外界病原侵袭、信息传递、调节渗透压等方面具有重要作用。黏蛋白(mucin)作为黏液的基础骨架组分,与其相关的研究正受到广泛的关注。在本研究中,作者克隆获得团头鲂(Megalobrama amblycephala)Muc5b mRNA 的部分序列3895 bp,并通过qRT-PCR分析了Muc5b在团头鲂不同组织的表达分布及其在捕捞应激后在鳃和表皮中的表达变化。序列分析结果显示,团头鲂Muc5b与鲤等脊椎动物的Muc5b有较高的同源性,其N端含有黏液蛋白特异性结构域:三个VWD区域,三个C8区域,二个TIL区。组织表达分析结果表明,Muc5b在鳃和表皮表达量相对较高,在脑、脾、肾中表达水平较低,在肝、肠道几乎不表达。捕捞应激后1 h时鳃中Muc5b显著降低(P < 0.05),24 h时恢复初始水平;表皮中4 h时Muc5b显著上升(P < 0.05),24 h时恢复到初始水平。  相似文献   

4.
The mouse model (Cftr(tm1UNC)/Cftr(tm1UNC)) for cystic fibrosis (CF) shows mucus accumulation and increased Muc1 mucin mRNA levels due to altered splicing (Hinojosa-Kurtzberg AM, Johansson MEV, Madsen CS, Hansson GC, and Gendler SJ. Am J Physiol Gastrointest Liver Physiol 284: G853-G862, 2003). However, it is not known whether Muc1 is a major mucin contributing to the increased mucus and why CF/Muc1-/- mice show lower mucus accumulation. To address this, we have purified mucins from the small intestine of CF mice using guanidinium chloride extraction, ultracentrifugation, and gel filtration and analyzed them by slot blot, gel electrophoresis, proteomics, and immunoblotting. Normal and CF mice with wild-type (WT) Muc1 or Muc1-/- or that are transgenic for human MUC1 (MUC1.Tg, on a Muc1-/- background) were analyzed. The total amount of mucins, both soluble and insoluble in guanidinium chloride, increased up to 10-fold in the CF mice compared with non-CF animals, whereas the CF mice lacking Muc1 showed intermediate levels between the CF and non-CF mice. However, the levels of Muc3 (orthologue of human MUC17) were increased in the CF/Muc1-/- mice compared with the CF/MUC1.Tg animals. The amount of MUC1 mucin was increased several magnitudes in the CF mice, but MUC1 did still not appear to be a major mucin. The amount of insoluble mucus of the large intestine was also increased in the CF mice, an effect that was partially restored in the CF/Muc1-/- mice. The thickness of the firmly adherent mucus layer of colon in the Muc1-/- mice was significantly lower than that of WT mice. The results suggest that MUC1 is not a major component in the accumulated mucus of CF mice and that MUC1 can influence the amount of other mucins in a still unknown way.  相似文献   

5.
The mucus layer continuously covering the gastric mucosa consists of a loosely adherent layer that can be easily removed by suction, leaving a firmly adherent mucus layer attached to the epithelium. These two layers exhibit different gastroprotective roles; therefore, individual regulation of thickness and mucin composition were studied. Mucus thickness was measured in vivo with micropipettes in anesthetized mice [isoflurane; C57BL/6, Muc1-/-, inducible nitric oxide synthase (iNOS)-/-, and neuronal NOS (nNOS)-/-] and rats (inactin) after surgical exposure of the gastric mucosa. The two mucus layers covering the gastric mucosa were differently regulated. Luminal administration of PGE(2) increased the thickness of both layers, whereas luminal NO stimulated only firmly adherent mucus accumulation. A new gastroprotective role for iNOS was indicated since iNOS-deficient mice had thinner firmly adherent mucus layers and a lower mucus accumulation rate, whereas nNOS did not appear to be involved in mucus secretion. Downregulation of gastric mucus accumulation was observed in Muc1-/- mice. Both the firmly and loosely adherent mucus layers consisted of Muc5ac mucins. In conclusion, this study showed that, even though both the two mucus layers covering the gastric mucosa consist of Muc5ac, they are differently regulated by luminal PGE(2) and NO. A new gastroprotective role for iNOS was indicated since iNOS-/- mice had a thinner firmly adherent mucus layer. In addition, a regulatory role of Muc1 was demonstrated since downregulation of gastric mucus accumulation was observed in Muc1-/- mice.  相似文献   

6.
Colonic mucosal protection is provided by the mucus gel, mainly composed of mucins. Several factors can modulate the formation and the secretion of mucins, and among them butyrate, an end-product of carbohydrate fermentation. However, the specific effect of butyrate on the various colonic mucins, and the consequences in terms of the mucus layer thickness are not known. Our aim was to determine whether butyrate modulates colonic MUC genes expression in vivo and whether this results in changes in mucus synthesis and mucus layer thickness. Mice received daily for 7 days rectal enemas of butyrate (100 mM) versus saline. We demonstrated that butyrate stimulated the gene expression of both secreted (Muc2) and membrane-linked (Muc1, Muc3, Muc4) mucins. Butyrate especially induced a 6-fold increase in Muc2 gene expression in proximal colon. However, butyrate enemas did not modify the number of epithelial cells containing the protein Muc2, and caused a 2-fold decrease in the thickness of adherent mucus layer. Further studies should help understanding whether this last phenomenon, i.e. the decrease in adherent mucus gel thickness, results in a diminished protective function or not.  相似文献   

7.
The polymeric mucin component of the intestinal mucus barrier changes during nematode infection to provide not only physical protection but also to directly affect pathogenic nematodes and aid expulsion. Despite this, the direct interaction of the nematodes with the mucins and the mucus barrier has not previously been addressed. We used the well-established Trichuris muris nematode model to investigate the effect on mucins of the complex mixture of immunogenic proteins secreted by the nematode called excretory/secretory products (ESPs). Different regimes of T. muris infection were used to simulate chronic (low dose) or acute (high dose) infection. Mucus/mucins isolated from mice and from the human intestinal cell line, LS174T, were treated with ESPs. We demonstrate that serine protease(s) secreted by the nematode have the ability to change the properties of the mucus barrier, making it more porous by degrading the mucin component of the mucus gel. Specifically, the serine protease(s) acted on the N-terminal polymerising domain of the major intestinal mucin Muc2, resulting in depolymerisation of Muc2 polymers. Importantly, the respiratory/gastric mucin Muc5ac, which is induced in the intestine and is critical for worm expulsion, was protected from the depolymerising effect exerted by ESPs. Furthermore, serine protease inhibitors (Serpins) which may protect the mucins, in particular Muc2, from depolymerisation, were highly expressed in mice resistant to chronic infection. Thus, we demonstrate that nematodes secrete serine protease(s) to degrade mucins within the mucus barrier, which may modify the niche of the parasite to prevent clearance from the host or facilitate efficient mating and egg laying from the posterior end of the parasite that is in intimate contact with the mucus barrier. However, during a TH2-mediated worm expulsion response, serpins, Muc5ac and increased levels of Muc2 protect the barrier from degradation by the nematode secreted protease(s).  相似文献   

8.
Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs.  相似文献   

9.
Gel-forming mucins are large, high molecular weight, and heavily O-glycosylated proteins that are responsible for the rheological properties of mucus gel. Among them, the mucin MUC5B has been implicated in breast cancer and cystic fibrosis. We obtained a new polyclonal serum, named CP1, which was isolated from a rabbit immunized with a mouse Muc5b peptide. The immunoprofile of Muc5b was determined on paraffin-embedded and frozen mouse tissue sections and showed a similar expression pattern in mouse to that in the human. The “nonmammary” mucin Muc5b was detected in all mammary tumors analyzed from MMTV-ras mice, suggesting that the CP1 antibody is a valuable tool for investigating the involvement of this mucin in mammary cancer. We also found that uninfected Cftr −/− mice harbored more Clara cells, which were Muc5b-positive, than did their wild-type control littermates. The number of Muc5b-positive cells increased in Cftr −/− mice infected experimentally with Pseudomonas aeruginosa, and the mice developed mucus plugs in their bronchi and bronchioles with a high frequency of Muc5b content (87%, Cohen’s kappa = 0.82; p < 0.0001). These findings suggest that mice genetically deficient in the Cftr gene are predisposed to develop mucus plugs and that MUC5B may provide a valuable target for decreasing mucus viscosity in cystic fibrosis.  相似文献   

10.
Some mucin genes have been detected during human embryonic and fetal organ development; however, little is known about mucin expression in epidermal development, neither in humans nor in other species. The present research was developed to explore Muc5ac skin expression during pre- and post-natal rat development. Immunohistochemistry (IHC), Western blotting (WB) and RT-PCR were employed. By IHC, Muc5ac protein was found early in embryonic epidermis from day 13 of gestation until seven days after birth when the surface epidermis became negative and the reaction was restricted to secreting sebum cells. In coincidence with IHC findings, WB analysis showed a band at approximately 200KDa at the same periods of development. Results were also confirmed by RT-PCR.Muc5ac expression in rat embryonic epidermis suggests that Muc5ac may play a protective role in embryonic skin previous to birth which may be replaced by pile covering. To our knowledge, this is the first report that confirmed Muc5ac expression during skin development.Key words: Muc5ac, skin, rat, development  相似文献   

11.
Mucus of cystic fibrosis patients exhibits altered biochemical composition and biophysical behavior, but the causal relationships between altered cystic fibrosis transmembrane conductance regulator (CFTR) function and the abnormal mucus seen in various organ systems remain unclear. We used cultured gallbladder epithelial cells (GBEC) from wild-type and Cftr((-/-)) mice to investigate mucin gene and protein expression, kinetics of postexocytotic mucous granule content expansion, and biochemical and ionic compositions of secreted mucins. Muc1, Muc3, Muc4, Muc5ac, and Muc5b mRNA levels were significantly lower in Cftr((-/-)) GBEC compared with wild-type cells, whereas Muc2 mRNA levels were higher in Cftr((-/-)) cells. Quantitative immunoblotting demonstrated a trend toward lower MUC1, MUC2, MUC3, MUC5AC, and MUC5B mucin levels in Cftr((-/-)) cells compared with cells from wild-type mice. In contrast, the levels of secreted MUC1, MUC3, MUC5B, and MUC6 mucins were significantly higher from Cftr((-/-)) cells; a trend toward higher levels of secreted MUC2 and MUC5AC was also noted from Cftr((-/-)) cells. Cftr((-/-)) cells demonstrated slower postexocytotic mucous granule content expansion. Calcium concentration was significantly elevated in the mucous gel secreted by Cftr((-/-)) cells compared with wild-type cells. Secreted mucins from Cftr((-/-)) cells contained higher sulfate concentrations. Thus absence of CFTR is associated with pleiotropic effects on mucins in murine GBEC.  相似文献   

12.
We describe a method for creating differentiated equine bronchial epithelial cell cultures that can be used for in vitro studies including airway disease mechanisms and pathogen–host interactions. Our method is based on the culturing of human tracheobronchial epithelial cells at an air–liquid interface (ALI) in specific serum-free, hormone-supplemented medium. Bronchial epithelial cells are isolated and grown on T-Clear® insert membranes. Within 2 to 3 wk, cells differentiate into ciliated and mucus producing cells as demonstrated by confocal and electron microscopy. Furthermore, the demonstration of the two major gel-forming mucin species, Muc5ac and Muc5b, in our bronchial epithelial cell culture system validates this method for studies of respiratory tract disease of the horse.  相似文献   

13.
Recently, we cloned and characterized a full-length cDNA of the hamster Muc1 gene, the expression of which appears to be associated with secretory cell differentiation (Park HR, Hyun SW, and Kim KC. Am J Respir Cell Mol Biol 15: 237-244, 1996). The role of Muc1 mucins in the airway, however, is unknown. In this study, we investigated whether cell surface mucins are adhesion sites for Pseudomonas aeruginosa. Chinese hamster ovary (CHO) cells not normally expressing Muc1 mucin were stably transfected with the hamster Muc1 cDNA, and binding to P. aeruginosa was examined. Our results showed that 1) stably transfected CHO cells expressed both Muc1 mRNA and Muc1 mucins based on Northern and Western blot analyses, 2) Muc1 mucins present on the cell surface were degraded by neutrophil elastase, and 3) expression of Muc1 mucins on the cell surface resulted in a significant increase in adhesion of P. aeruginosa that was completely abolished by either proteolytic cleavage with neutrophil elastase or deletion of the extracellular domain by mutation. We conclude that Muc1 mucins expressed on the surface of CHO cells serve as adhesion sites for P. aeruginosa, suggesting a possible role for these glycoproteins in the early stage of airway infection and providing a model system for studying epithelial cell responses to bacterial adhesion that leads to airway inflammation in general and cystic fibrosis in particular.  相似文献   

14.
Mucins provide a protective barrier for epithelial surfaces, and their overexpression in tumors has been implicated in malignancy. We have previously demonstrated that Muc4, a transmembrane mucin that promotes tumor growth and metastasis, physically interacts with the ErbB2 receptor tyrosine kinase and augments receptor tyrosine phosphorylation in response to the neuregulin-1beta (NRG1beta) growth factor. In the present study we demonstrate that Muc4 expression in A375 human melanoma cells, as well as MCF7 and T47D human breast cancer cells, enhances NRG1beta signaling through the phosphatidylinositol 3-kinase pathway. In examining the mechanism underlying Muc4-potentiated ErbB2 signaling, we found that Muc4 expression markedly augments NRG1beta binding to A375 cells without altering the total quantity of receptors expressed by the cells. Cell-surface protein biotinylation experiments and immunofluorescence studies suggest that Muc4 induces the relocalization of the ErbB2 and ErbB3 receptors from intracellular compartments to the plasma membrane. Moreover, Muc4 interferes with the accumulation of surface receptors within internal compartments following NRG1beta treatment by suppressing the efficiency of receptor internalization. These observations suggest that transmembrane mucins can modulate receptor tyrosine kinase signaling by influencing receptor localization and trafficking and contribute to our understanding of the mechanisms by which mucins contribute to tumor growth and progression.  相似文献   

15.
目的研究白细胞介素-13(IL-13)对AGR2mRNA和蛋白在哮喘小鼠肺组织中表达的影响,探讨AGR2在哮喘气道黏液过度分泌中的作用。方法 18只雌性小鼠随机分为哮喘组、对照组和IL-13组,IL-13组于26d-28d激发前经鼻滴入100μg重组小鼠IL-13。收集支气管肺泡灌洗液(BALF)计嗜酸性细胞分类计数。Real time-PCR方法检测肺组织AGR2mRNA表达。免疫组化法分别检测AGR2蛋白和Muc5ac蛋白在小鼠肺组织的表达。结果哮喘组BALF中嗜酸性细胞分类计数(19.1±6.34)%较正常组(0.28±0.29)%明显增多(P<0.01);IL-13组BALF中嗜酸性细胞分类计数(30.05±9.32)%较哮喘组明显升高(P<0.01)。IL-13组小鼠肺组织中AGR2mRNA(1.702±0.046)和蛋白(0.617±0.028)的表达较哮喘组(1.52±0.071,P<0.01;0.505±0.078,P<0.05)升高,IL-13组AGR2mRNA与Muc5ac蛋白的表达水平呈直线正相关(r=0.862,P<0.05);AGR2蛋白与Muc5ac蛋白水平呈直线正相关(r=0.847,P<0.05)。结论 AGR2可能参与了哮喘气道黏液过度分泌发病机制,IL-13可通过上调其表达,进一步促进黏蛋白Muc5ac表达。  相似文献   

16.
Rate-zonal centrifugation of a reduced and alkylated respiratory mucin preparation identified a protein-rich fraction. This was subjected to trypsin treatment and one of the many liberated peptides was purified and its N-terminal sequence determined. The peptide was identical to a 14 amino acid sequence from the scavenger receptor cysteine-rich domain containing glycoprotein gp-340. A polyclonal antiserum, raised against the peptide, stained the serous cells in the submucosal glands of human tracheal tissue. The glycoprotein was purified from respiratory mucus by density-gradient centrifugation, gel chromatography, and anion exchange chromatography. The molecule exhibited a heterogeneous distribution of buoyant density (1.28-1.46 g/ml) that overlapped with the gel-forming mucins, was included on Sepharose CL-2B and was quite highly anionic. SDS-PAGE indicated a mass greater than 208 kDa and measurements performed across the molecular size distribution indicated an average M(r) of 5 x 10(5) with a range of M(r) from 2 x 10(5) to 1 x 10(6). Gel chromatography of respiratory mucus extracts ("associative" and "dissociative") indicated that this glycoprotein forms complexes that may involve the large gel-forming mucins MUC5AC and MUC5B. Rate zonal centrifugation suggested such complexes are more likely to involve MUC5B rather than MUC5AC mucins.  相似文献   

17.
Human mucin MUC3 and rodent Muc3 are widely assumed to represent secretory mucins expressed in columnar and goblet cells of the intestine. Using a 3'-oligonucleotide probe and in situ hybridization, we observed expression of rat Muc3 mostly in columnar cells. Two antibodies specific for COOH-terminal epitopes of Muc3 localized to apical membranes and cytoplasm of columnar cells. An antibody to the tandem repeat (TR) sequence (TTTPDV)3, however, localized to both columnar and goblet cells. On CsCl gradients, Muc3 appeared in both light- and heavy-density fractions. The lighter species was immunoreactive with all three antibodies, whereas the heavier species reacted only with anti-TR antibody. Thus Muc3 is expressed in two forms, a full-length membrane-associated form found in columnar cells (light density) and a carboxyl-truncated soluble form present in goblet cells (heavy density). In a mouse model of human cystic fibrosis, both soluble Muc3 and goblet cell Muc2 were increased in amount and hypersecreted. Thus Muc2 and Muc3 contribute to the excess intestinal luminal mucus of cystic fibrosis mice.  相似文献   

18.
Gel-forming mucins are large high-molecular weight secreted O-glycoproteins responsible for the gel-properties of the mucus blanket. Five orthologous gel-forming mucins have been cloned in human and mouse. Among them, the mucin MUC6 has been less studied, particularly in rodents and no anti rodent-Muc6 antibody has been reported yet. In order to further study Muc6 in mice, our aims were to obtain a specific Muc6 antibody, to validate it and to test it in Cftr deficient mice. A polyclonal serum named CP4 was isolated from a rabbit immunized by a mouse Muc6 peptide. In Western blot experiments, the antibody detected a high-molecular weight molecule secreted by the gastric tissue. Using immunohistochemistry, we showed that the antibody reacted strongly with deep glands of duodenum and ileum and mucous neck cells of gastric body. CP4 also recognized Muc6 protein secreted at the surface of the stomach and renal collecting tubules. The centroacinar cells of pancreatic tissue also reacted with the antibody. Cftr−/− mice showed a higher expression of Muc6 at both protein and RNA levels compared with their control Cftr+/+ littermates suggesting that as in the human disease, Muc6 may contribute to the formation of materials that block pancreatic acini and ducts in mouse models of cystic fibrosis. The rabbit anti-mouse Muc6 polyclonal antibody seems highly specific to the mouse mucin and will be useful to study pancreatic pathology in cystic fibrosis.  相似文献   

19.
Gallbladder mucins play a critical role in the pathogenesis of cholesterol gallstones because of their ability to bind biliary lipids and accelerate cholesterol crystallization. Mucin secretion and accumulation in the gallbladder is determined by multiple mucin genes. To study whether mucin gene 1 (Muc1) influences susceptibility to cholesterol cholelithiasis, we investigated male Muc1-deficient (Muc1(-/-)) and wild-type mice fed a lithogenic diet containing 1% cholesterol and 0.5% cholic acid for 56 days. Gene expression of the gallbladder Muc1 and Muc5ac was significantly reduced in Muc1(-/-) mice in response to the lithogenic diet. Muc3 and Muc4 levels were upregulated and were similar between Muc1(-/-) and wild-type mice. Little or no Muc2 and Muc5b mRNAs were detected. Muc1(-/-) mice displayed significant decreases in total mucin secretion and accumulation in the gallbladder as well as retardation of crystallization, growth, and agglomeration of cholesterol monohydrate crystals. At 56 days of feeding, gallstone prevalence was decreased by 40% in Muc1(-/-) mice. However, cholesterol saturation indices of gallbladder bile, hepatic secretion of biliary lipids, and gallbladder size were comparable in Muc1(-/-) and wild-type mice. We conclude that decreased gallstone formation in mice with disrupted Muc1 gene results from reduced mucin secretion and accumulation in the gallbladder.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号