首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase C and casein kinase 2 substrates in neurons (PACSINs) represent a subfamily of membrane-binding proteins characterized by an amino-terminal Bin-Amphiphysin-Rvs (F-BAR) domain. PACSINs link membrane trafficking with actin dynamics and regulate the localization of distinct cargo molecules. The F-BAR domain forms a dimer essential for lipid binding. We have obtained crystals of authentic murine PACSIN 2 that contain an ordered F-BAR domain, indicating that additional domains are flexibly connected to F-BAR. The structure shares similarity to other BAR domains and exhibits special features unique to PACSINs. These include the uneven distribution of charged residues on the concave molecular surface and a so-called wedge loop that is driven into the membrane upon binding of PACSIN. The murine PACSIN 2 F-BAR domain requires dimerization for sensing of curved membranes, and the present structure also provides a mechanism for higher-order oligomer formation. Importantly, comparison of murine with human and Drosophila PACSIN 2 F-BAR domains reveals stark differences in the orientation of distal helical segments leading to a wider crescent shape of murine PACSIN 2. We define hinge residues for these movements that may help PACSINs sense and concomitantly reinforce membrane curvature.  相似文献   

2.
Syndapins were proposed to interconnect the machineries for vesicle formation and actin polymerization, as they interact with dynamin and the Arp2/3 complex activator N-WASP (neural Wiskott-Aldrich syndrome protein). Syndapins, however, have only one Src homology 3 domain mediating both interactions. Here we show that syndapins self-associate via direct syndapin/syndapin interactions, providing a molecular mechanism for the coordinating role of syndapin. Cross-link studies with overexpressed and endogenous syndapins suggest that predominantly dimers form in vivo. Our analyses show that the N-terminal Fes/Cip4 homology domain but not the central coiled-coil domain is sufficient for oligomerization. Additionally, a second interface located further C-terminally mediated interactions with the N terminus. The Src homology 3 domain and the NPF region are not involved and thus available for further interactions interconnecting different syndapin binding partners. Our analyses showed that self-association is crucial for syndapin function. Both syndapin-mediated cytoskeletal rearrangements and endocytosis were disrupted by a self-association-deficient mutant. Consistent with a role of syndapins in linking actin polymerization bursts with endocytic vesicle formation, syndapin-containing complexes had a size of 300-500 kDa in gel filtration analysis and contained both dynamin and N-WASP. The existence of an interconnection of the GTPase dynamin with N-WASP via syndapin oligomers was demonstrated both by coimmunoprecipitations and by reconstitution at membranes in intact cells. The interconnection was disrupted by coexpression of syndapin mutants incapable of self-association. Syndapin oligomers may thus act as multivalent organizers spatially and temporally coordinating vesicle fission with local actin polymerization.  相似文献   

3.
BAR (Bin/amphiphysin/Rvs) domain-containing proteins participate in cellular membrane remodeling. The F-BAR proteins normally generate low curvature tubules. However, in the PACSIN subfamily, the F-BAR domain from PACSIN 1 and 2 can induce both high and low curvature tubules. We found that unlike PACSIN 1 and 2, PACSIN 3 could only induce low curvature tubules. To elucidate the key factors that dictate the tubule curvature, crystal structures of all three PACSIN F-BAR domains were determined. A novel type of lateral interaction mediated by a wedge loop is observed between the F-BAR neighboring dimers. Comparisons of the structures of PACSIN 3 with PACSIN 1 and 2 indicate that the wedge loop of PACSIN 3 is more rigid, which influences the lateral interactions between assembled dimers. We further identified the residues that affect the rigidity of the loop by mutagenesis and determined the structures of two PACSIN 3 wedge loop mutants. Our results suggest that the rigidity-mediated conformations of the wedge loop correlate well with the various crystal packing modes and membrane tubulations. Thus, the rigidity of the wedge loop is a key factor in dictating tubule diameters.  相似文献   

4.
Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro. Full-length pacsin isoform 1 (pacsin-1) has reduced activity compared to its isolated F-BAR domain, implicating an inhibitory role for its C-terminal Src homology 3 (SH3) domain. Here we show that the autoinhibitory, intramolecular interactions in pacsin-1 can be released upon binding to the entire proline-rich domain (PRD) of dynamin-1, resulting in potent membrane deformation activity that is distinct from the isolated F-BAR domain. Most strikingly, we observe the generation of small, homogenous vesicles with the activated protein complex under certain experimental conditions. In addition, liposomes prepared with different methods yield distinct membrane deformation morphologies of BAR domain proteins and apparent activation barriers to pacsin-1''s activity. Theoretical free energy calculations suggest bimodality of the protein-membrane system as a possible source for the different outcomes, which could account for the coexistence of energetically equivalent membrane structures induced by BAR domain-containing proteins in vitro. Taken together, our results suggest a versatile role for pacsin-1 in sculpting cellular membranes that is likely dependent both on protein structure and membrane properties.  相似文献   

5.
The F-BAR domain containing proteins PACSINs are cytoplasmic phosphoproteins involved in various membrane deformations, such as actin reorganization, vesicle transport and microtubule movement. Our previous study shows that all PACSINs are composed of crescent shaped dimers with two wedge loops, and the wedge loopmediated lateral interaction between neighboring dimmers is important for protein packing and tubulation activity. Here, from the crystal packing of PACSIN 2, we observed a tight tip-to-tip interaction, in addition to the wedge loopmediated lateral interaction. With this tip-to-tip interaction, the whole packing of PACSIN 2 shows a spiral-like assembly with a central hole from the top view. Elimination of this tip-to-tip connection inhibited the tubulation function of PACSIN 2, indicating that tip-to-tip interaction plays an important role in membrane deformation activity. Together with our previous study, we proposed a packing model for the assembly of PACSIN 2 on membrane, where the proteins are connected by tip-to-tip and wedge loop-mediated lateral interactions on the surface of membrane to generate various diameter tubules.  相似文献   

6.
Endophilin-1: a multifunctional protein   总被引:7,自引:0,他引:7  
Endophilin-1, a cytoplasmic Src homology 3 (SH3) domain-containing protein, localises in brain presynaptic nerve termini. Endophilin dimerises through its N-terminus, and participates at multiple stages in clathrin-coated endocytosis, from early membrane invagination to synaptic vesicle uncoating. Both its C-terminal SH3 domain and N-terminus are required for endocytosis. Through its SH3 domain, endophilin bound to proline-rich domains (PRDs) in other endocytic proteins, including synaptojanin and dynamin. The N-terminal region possesses unique functions affecting lipid membrane curvature, through lysophosphatidic acid acyl transferase (LPAAT) activity and direct binding and tubulating activity. In addition to synaptic vesicle formation, endophilin-1 complexes with signalling molecules, including cell surface receptors, metalloprotease disintegrins and germinal centre kinase-like kinase (GLK). Therefore, endophilin-1 may serve to couple vesicle biogenesis with intracellular signalling cascades.  相似文献   

7.
Mammalian Son-of-sevenless (mSos) functions as a guanine nucleotide exchange factor for Ras and Rac, thus regulating signaling to mitogen-activated protein kinases and actin dynamics. In the current study, we have identified a new mSos-binding protein of 50 kDa (p50) that interacts with the mSos1 proline-rich domain. Mass spectrometry analysis and immunodepletion studies reveal p50 as PACSIN 1/syndapin I, a Src homology 3 domain-containing protein functioning in endocytosis and regulation of actin dynamics. In addition to PACSIN 1, which is neuron-specific, mSos also interacts with PACSIN 2, which is expressed in neuronal and nonneuronal tissues. PACSIN 2 shows enhanced binding to the mSos proline-rich domain in pull-down assays from brain extracts as compared with lung extracts, suggesting a tissue-specific regulation of the interaction. Proline to leucine mutations within the Src homology 3 domains of PACSIN 1 and 2 abolish their binding to mSos, demonstrating the specificity of the interactions. In situ, PACSIN 1 and mSos1 are co-expressed in growth cones and actin-rich filopodia in hippocampal and dorsal root ganglion neurons, and the two proteins co-immunoprecipitate from brain extracts. Moreover, epidermal growth factor treatment of COS-7 cells causes co-localization of PACSIN 1 and mSos1 in actin-rich membrane ruffles, and their interaction is regulated through epidermal growth factor-stimulated mSos1 phosphorylation. These data suggest that PACSINs may function with mSos1 in regulation of actin dynamics.  相似文献   

8.
The CD95/Fas/Apo-1 ligand (CD95L, CD178) induces apoptosis through the death receptor CD95. CD95L was also described as a co-stimulatory receptor for T-cell activation in mice in vivo. The molecular basis for the bidirectional signaling capacity and directed expression of CD95L is unknown. In the present study we identify proteins that precipitate from T-cell lysates with constructs containing fragments of the CD95L cytosolic tail. The determined peptide mass fingerprints correspond to Grb2, actin, beta-tubulin, formin binding protein 17 (FBP17) and PACSIN2. Grb2 had been identified as a putative mediator of T-cell receptor-to-CD95L signaling before. FBP17 and PACSIN2 may be associated with expression and trafficking of CD95L. When overexpressed, CD95L co-precipitates with FBP17 and PACSIN. Protein-protein interactions are mediated via Src homology 3 (SH3) domain binding to the polyproline region of CD95L and can be abolished by mutation or deletion of the respective SH3 domain.  相似文献   

9.
Pombe Cdc15 homology proteins, characterized by Fer/CIP4 homology Bin-Amphiphysin-Rvs/extended Fer/CIP4 homology (F-BAR/EFC) domains with membrane invaginating property, play critical roles in a variety of membrane reorganization processes. Among them, Rapostlin/formin-binding protein 17 (FBP17) has attracted increasing attention as a critical coordinator of endocytosis. Here we found that Rapostlin was expressed in the developing rat brain, including the hippocampus, in late developmental stages when accelerated dendritic spine formation and maturation occur. In primary cultured rat hippocampal neurons, knockdown of Rapostlin by shRNA or overexpression of Rapostlin-QQ, an F-BAR domain mutant of Rapostlin that has no ability to induce membrane invagination, led to a significant decrease in spine density. Expression of shRNA-resistant wild-type Rapostlin effectively restored spine density in Rapostlin knockdown neurons, whereas expression of Rapostlin deletion mutants lacking the protein kinase C-related kinase homology region 1 (HR1) or Src homology 3 (SH3) domain did not. In addition, knockdown of Rapostlin or overexpression of Rapostlin-QQ reduced the uptake of transferrin in hippocampal neurons. Knockdown of Rnd2, which binds to the HR1 domain of Rapostlin, also reduced spine density and the transferrin uptake. These results suggest that Rapostlin and Rnd2 cooperatively regulate spine density. Indeed, Rnd2 enhanced the Rapostlin-induced tubular membrane invagination. We conclude that the F-BAR protein Rapostlin, whose activity is regulated by Rnd2, plays a key role in spine formation through the regulation of membrane dynamics.  相似文献   

10.
A disintegrin and metalloprotease 12 (ADAM12/meltrin alpha) is a key enzyme implicated in the ectodomain shedding of membrane-anchored heparin-binding epidermal growth factor (EGF)-like growth factor (proHB-EGF)-dependent epidermal growth factor receptor (EGFR) transactivation. However, the activation mechanisms of ADAM12 are obscure. To determine how ADAM12 is activated, we screened proteins that bind to the cytoplasmic domain of ADAM12 using a yeast two-hybrid system and identified a protein called PACSIN3 that contains a Src homology 3 domain. An analysis of interactions between ADAM12 and PACSIN3 using glutathione S-transferase fusion protein revealed that a proline-rich region (amino acid residues 829-840) of ADAM12 was required to bind PACSIN3. Furthermore, co-immunoprecipitation and co-localization analyses of ADAM12 and PACSIN3 proteins also revealed their interaction in mammalian cells expressing both of them. The overexpression of PACSIN3 in HT1080 cells enhanced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced proHB-EGF shedding. Furthermore, knockdown of endogenous PACSIN3 by small interfering RNA in HT1080 cells significantly attenuated the shedding of proHB-EGF induced by TPA and angiotensin II. Our data indicate that PACSIN3 has a novel function as an up-regulator in the signaling of proHB-EGF shedding induced by TPA and angiotensin II.  相似文献   

11.
12.
Eukaryotic cells are defined by extensive intracellular compartmentalization, which requires dynamic membrane remodeling. FER/Cip4 homology-Bin/amphiphysin/Rvs (F-BAR) domain family proteins form crescent-shaped dimers, which can bend membranes into buds and tubules of defined geometry and lipid composition. However, these proteins exhibit an unexplained wide diversity of membrane-deforming activities in vitro and functions in vivo. We find that the F-BAR domain of the neuronal protein Nervous Wreck (Nwk) has a novel higher-order structure and membrane-deforming activity that distinguishes it from previously described F-BAR proteins. The Nwk F-BAR domain assembles into zigzags, creating ridges and periodic scallops on membranes in vitro. This activity depends on structural determinants at the tips of the F-BAR dimer and on electrostatic interactions of the membrane with the F-BAR concave surface. In cells, Nwk-induced scallops can be extended by cytoskeletal forces to produce protrusions at the plasma membrane. Our results define a new F-BAR membrane-deforming activity and illustrate a molecular mechanism by which positively curved F-BAR domains can produce a variety of membrane curvatures. These findings expand the repertoire of F-BAR domain mediated membrane deformation and suggest that unique modes of higher-order assembly can define how these proteins sculpt the membrane.  相似文献   

13.
We have used comprehensive synthetic lethal screens and biochemical assays to examine the biological role of the yeast amphiphysin homologues Rvs161p and Rvs167p, two proteins that play a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. We found that unlike some forms of amphiphysin, Rvs161p-Rvs167p acts as an obligate heterodimer during vegetative growth and neither Rvs161p nor Rvs167p forms a homodimer in vivo. RVS161 and RVS167 have an identical set of 49 synthetic lethal interactions, revealing functions for the Rvs proteins in cell polarity, cell wall synthesis, and vesicle trafficking as well as a shared role in mating. Consistent with these roles, we show that the Rvs167p-Rvs161p heterodimer, like its amphiphysin homologues, can bind to phospholipid membranes in vitro, suggesting a role in vesicle formation and/or fusion. Our genetic screens also reveal that the interaction between Abp1p and the Rvs167p Src homology 3 (SH3) domain may be important under certain conditions, providing the first genetic evidence for a role for the SH3 domain of Rvs167p. Our studies implicate heterodimerization of amphiphysin family proteins in various functions related to cell polarity, cell integrity, and vesicle trafficking during vegetative growth and the mating response.  相似文献   

14.
Cell membranes undergo continuous curvature changes as a result of membrane trafficking and cell motility. Deformations are achieved both by forces extrinsic to the membrane as well as by structural modifications in the bilayer or at the bilayer surface that favor the acquisition of curvature. We report here that a family of proteins previously implicated in the regulation of the actin cytoskeleton also have powerful lipid bilayer-deforming properties via an N-terminal module (F-BAR) similar to the BAR domain. Several such proteins, like a subset of BAR domain proteins, bind to dynamin, a GTPase implicated in endocytosis and actin dynamics, via SH3 domains. The ability of BAR and F-BAR domain proteins to induce tubular invaginations of the plasma membrane is enhanced by disruption of the actin cytoskeleton and is antagonized by dynamin. These results suggest a close interplay between the mechanisms that control actin dynamics and those that mediate plasma membrane invagination and fission.  相似文献   

15.
SNARE proteins on transport vesicles and target membranes have important roles in vesicle targeting and fusion. Therefore, localization and activity of SNAREs have to be tightly controlled. Regulatory proteins bind to N-terminal domains of some SNAREs. vti1b is a mammalian SNARE that functions in late endosomal fusion. To investigate the role of the N terminus of vti1b we performed a yeast two-hybrid screen. The N terminus of vti1b interacted specifically with the epsin N-terminal homology (ENTH) domain of enthoprotin/CLINT/epsinR. The interaction was confirmed using in vitro binding assays. This complex formation between a SNARE and an ENTH domain was conserved between mammals and yeast. Yeast Vti1p interacted with the ENTH domain of Ent3p. ENTH proteins are involved in the formation of clathrin-coated vesicles. Both epsinR and Ent3p bind adaptor proteins at the trans-Golgi network. Vti1p is required for multiple transport steps in the endosomal system. Genetic interactions between VTI1 and ENT3 were investigated. Synthetic defects suggested that Vti1p and Ent3p cooperate in transport from the trans-Golgi network to the prevacuolar endosome. Our experiments identified the first cytoplasmic protein binding to specific ENTH domains. These results point toward a novel function of the ENTH domain and a connection between proteins that function either in vesicle formation or in vesicle fusion.  相似文献   

16.
pp60(c-src) is a prototypical nonreceptor tyrosine kinase and may play a role in diseases as diverse as cancer and osteoporosis. In Src, the SH3 domain (Src homology 3) binds proteins at specific, proline-rich sequences, while the SH2 domain (Src homology 2) binds phosphotyrosine-containing sequences. Inhibition of Src SH3 and SH2 domain function is of potential therapeutic value because of their importance in signaling pathways involved in disease states. We have developed dual-wavelength fluorescent peptide probes for both the Src SH3 and the Src SH2 domains, which allow the simultaneous measurement of compounds binding to each domain in assays based on the technique of fluorescence polarization. We demonstrate the utility of these probes in a dual-binding assay (suitable for high-throughput screening) to study the interactions of various peptides with these domains, including a sequence from the rat protein p130(CAS) which has been reported to bind simultaneously to both Src SH3 and SH2 domains. Utilizing this dual-binding assay, we confirm that sequences from p130(CAS) can simultaneously bind Src via both its SH3 and its SH2 domains. We also use the dual-binding assay as an internal control to identify substances which inhibit SH3 and SH2 binding via nonspecific mechanisms.  相似文献   

17.
Syndapins belong to the F-BAR domain protein family whose predicted functions in membrane tubulation remain poorly studied in vivo. At Drosophila neuromuscular junctions, syndapin is associated predominantly with a tubulolamellar postsynaptic membrane system known as the subsynaptic reticulum (SSR). We show that syndapin overexpression greatly expands this postsynaptic membrane system. Syndapin can expand the SSR in the absence of dPAK and Dlg, two known regulators of SSR development. Syndapin's N-terminal F-BAR domain, required for membrane tubulation in cultured cells, is required for SSR expansion. Consistent with a model in which syndapin acts directly on postsynaptic membrane, SSR expansion requires conserved residues essential for membrane binding in vitro. However, syndapin's Src homology (SH) 3 domain, which negatively regulates membrane tubulation in cultured cells, is required for synaptic targeting and strong SSR induction. Our observations advance knowledge of syndapin protein function by 1) demonstrating the in vivo relevance of membrane remodeling mechanisms suggested by previous in vitro and structural analyses, 2) showing that SH3 domains are necessary for membrane expansion observed in vivo, and 3) confirming that F-BAR proteins control complex membrane structures.  相似文献   

18.
The mechanisms by which cytosolic proteins reversibly bind the membrane and induce the curvature for membrane trafficking and remodeling remain elusive. The epsin N-terminal homology (ENTH) domain has potent vesicle tubulation activity despite a lack of intrinsic molecular curvature. EPR revealed that the N-terminal α-helix penetrates the phosphatidylinositol 4,5-bisphosphate-containing membrane at a unique oblique angle and concomitantly interacts closely with helices from neighboring molecules in an antiparallel orientation. The quantitative fluorescence microscopy showed that the formation of highly ordered ENTH domain complexes beyond a critical size is essential for its vesicle tubulation activity. The mutations that interfere with the formation of large ENTH domain complexes abrogated the vesicle tubulation activity. Furthermore, the same mutations in the intact epsin 1 abolished its endocytic activity in mammalian cells. Collectively, these results show that the ENTH domain facilitates the cellular membrane budding and fission by a novel mechanism that is distinct from that proposed for BAR domains.  相似文献   

19.
The protein tyrosine kinase c-Src is negatively regulated by phosphorylation of Tyr527 in its C-terminal tail. The repressed state is achieved through intramolecular interactions involving the phosphorylated tail, the Src homology 2 (SH2) domain and the SH3 domain. Both the SH2 and SH3 domains have also been shown to mediate the intermolecular interaction of Src with several proteins. To test which amino acids of the Src SH3 domain are important for these interactions, and whether the intra- and intermolecular associations involve the same residues, we carried out a detailed mutational analysis of the presumptive interaction surface. All mutations of conserved hydrophobic residues had an effect on both inter- and intramolecular interactions of the Src SH3 domain, although not all amino acids were equally important. Chimeric molecules in which the Src SH3 domain was replaced with those of spectrin or Lck showed derepressed kinase activity, whereas a chimera containing the Fyn SH3 domain was fully regulated. Since spectrin and Lck SH3 domains share the conserved hydrophobic residues characteristic of SH3 domains, other amino acids must be important for specificity. Mutational analysis of non- or semi-conserved residues in the RT and n-Src loops showed that some of these were also involved in inter- and intramolecular interactions. Stable transfection of selected SH3 domain mutants into NIH-3T3 cells showed that despite elevated levels of phosphotyrosine, the cells were morphologically normal, indicating that the SH3 domain was required for efficient transformation of NIH-3T3 cells by Src.  相似文献   

20.
Membrane-associated guanylate kinase homologs (MAGUKs) are multidomain proteins found to be central organizers of cellular junctions. In this study, we examined the molecular mechanisms that regulate the interaction of the MAGUK SAP97 with its GUK domain binding partner GKAP (GUK-associated protein). The GKAP-GUK interaction is regulated by a series of intramolecular interactions. Specifically, the association of the Src homology 3 (SH3) domain and sequences situated between the SH3 and GUK domains with the GUK domain was found to interfere with GKAP binding. In contrast, N-terminal sequences that precede the first PDZ domain in SAP97, facilitated GKAP binding via its association with the SH3 domain. Utilizing crystal structure data available for PDZ, SH3 and GUK domains, molecular models of SAP97 were generated. These models revealed that SAP97 can exist in a compact U-shaped conformation in which the N-terminal domain folds back and interacts with the SH3 and GUK domains. These models support the biochemical data and provide new insights into how intramolecular interactions may regulate the association of SAP97 with its binding partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号