首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the rabbit small intestine, there are three functionally different brush-border membrane (BBM) anion/HCO3- exchangers: 1) Cl/HCO3- exchange on the BBM of villus cells responsible for coupled NaCl absorption; 2) Cl/HCO3- exchange on the BBM of crypt cells possibly involved in HCO3- secretion; and 3) short-chain fatty acid (SCFA)/HCO3- exchange on the BBM of villus cells, which facilitates SCFA absorption. Although constitutive nitric oxide (cNO) has been postulated to alter many gastrointestinal tract functions, how cNO may specifically alter these three transporters is unknown. Inhibition of cNO synthase with NG-nitro-L-arginine methyl ester (L-NAME) 1) did not affect villus cell BBM Cl/HCO3 change, 2) stimulated crypt cell BBM Cl/HCO3- exchange, and 3) inhibited villus cell BBM SCFA/HCO3- exchange. D-NAME, an inactive analog of L-NAME, and L-N6-(1-iminoethyl)lysine, a more selective inhibitor of inducible NO, did not affect these transport processes. Kinetic studies demonstrated that 1) the mechanism of inhibition of crypt cell BBM Cl/HCO3- exchange is secondary to a decrease in the maximal rate of uptake of Cl, without an alteration in the affinity of the transporter for Cl, and 2) the mechanism of stimulation of villus cell BBM SCFA/HCO3- exchange is secondary to an increase in the affinity of the transporter for SCFA without an alteration in the maximal rate of uptake of SCFA. These results indicate that cNO uniquely regulates the three BBM anion/HCO3- transporters in the rabbit small intestine.  相似文献   

2.
In the normal ileum, coupled NaCl absorption occurs via the dual operation of Na(+)/H(+) and Cl(-)/HCO(-)(3) exchange on the brush-border membrane (BBM) of villus cells. In a rabbit model of chronic small intestinal inflammation we determined the cellular mechanism of inhibition of NaCl absorption and the effect of steroids on this inhibition. Cl(-)/HCO(-)(3) but not Na(+)/H(+) exchange was reduced in the BBM of villus cells during chronic ileitis. Cl(-)/HCO(-)(3) exchange was inhibited secondary to a decrease in the affinity for Cl(-) rather than an alteration in the maximal rate of uptake of Cl(-) (V(max)). Methylprednisolone (MP) stimulated Cl(-)/HCO(-)(3) exchange in the normal ileum by increasing the V(max) of Cl(-) uptake rather than altering affinity for Cl(-). MP reversed the inhibition of Cl(-)/HCO(-)(3) exchange in rabbits with chronic ileitis. However, MP alleviated the Cl(-)/HCO(-)(3) exchange inhibition by restoring the affinity for Cl(-) rather than altering the V(max) of Cl(-) uptake. These data suggest that glucocorticoids mediate the alleviation of Cl(-)/HCO(-)(3) exchange inhibition in chronically inflamed ileum by reversing the same mechanism that was responsible for inhibition of this transporter rather than exerting a direct effect on the transporter itself, as was the case in normal ileum.  相似文献   

3.
Previous in vivo studies suggest that constitutive nitric oxide (cNO) can regulate Na- glucose cotransport (SGLT1) and Na-H exchange (NHE3) in rabbit intestinal villus cells. Whether these two primary Na absorbing pathways are directly regulated by cNO and the mechanisms of this regulation in the enterocyte is not known. Thus nontransformed rat small intestinal epithelial cells (IEC-18) were treated with N(G)-nitro-l-arginine methyl ester (l-NAME), which directly decreased cNO in these cells. l-NAME treatment decreased SGLT1 in IEC-18 cells. Kinetic studies demonstrated that the mechanism of inhibition was secondary to a decrease in the affinity of the cotransporter for glucose without a change in the number of cotransporters. In contrast, l-NAME treatment increased NHE3 in IEC-18 cells. Kinetic studies demonstrated that the mechanism of stimulation was by increasing the number of the exchangers without a change in the affinity for Na. Quantitative RT-PCR (RTQ-PCR) and Western blot analysis of SGLT1 demonstrated no change in mRNA and protein, respectively. RTQ-PCR and Western blot analysis of NHE3 indicated that NHE3 was increased by l-NAME treatment by an increase in mRNA and protein, respectively. These results indicate that decreased cNO levels directly mediate the inhibition of SGLT1 and stimulation of NHE3 in intestinal epithelial cells. Thus cNO directly but uniquely regulates the two primary Na-absorptive pathways in the mammalian small intestine.  相似文献   

4.
Short-chain fatty acids (SCFA) have been demonstrated to at least partially ameliorate chronic intestinal inflammation. However, whether and how intestinal SCFA absorption may be altered during chronic intestinal inflammation is unknown. A rabbit model of chronic ileitis produced by coccidia was used to determine the effect of chronic inflammation on ileal SCFA/HCO(-)(3) exchange. SCFA/HCO(-)(3) exchange was present in the brush-border membrane (BBM) of villus but not crypt cells from normal rabbit ileum. An anion-exchange inhibitor, DIDS, significantly inhibited SCFA/HCO(-)(3) exchange. Extravesicular Cl(-) did not alter the uptake of SCFA, suggesting that SCFA/HCO(-)(3) exchange is a transport process distinct from Cl(-)/HCO(-)(3) exchange. In chronically inflamed ileum, SCFA/HCO(-)(3) exchange was also present only in BBM of villus cells. The exchanger was sensitive to DIDS and was unaffected by extravesicular Cl(-). However, SCFA/HCO(-)(3) exchange was significantly reduced in villus cell BBM vesicles (BBMV) from chronically inflamed ileum. Kinetic studies demonstrated that the maximal rate of uptake of SCFA, but not the affinity for SCFA, was reduced in chronically inflamed rabbit ileum. These data demonstrate that a distinct SCFA/HCO(-)(3) exchange is present on BBMV of villus but not crypt cells in normal rabbit ileum. SCFA/HCO(-)(3) exchange is inhibited in chronically inflamed rabbit ileum. The mechanism of inhibition is most likely secondary to a reduction in transporter numbers rather than altered affinity for SCFA.  相似文献   

5.
6.
We have studied the mechanisms of NaCl transport in the mammalian proximal tubule. Studies of isolated brush-border membrane vesicles confirmed the presence of Na+-H+ exchange and identified Cl(-)-formate and Cl(-)-oxalate exchangers as possible mechanisms of uphill Cl- entry. We found that formate and oxalate each stimulate NaCl absorption in microperfused proximal tubules. Stimulation of NaCl absorption by formate was blocked by the Na+-H+-exchange inhibitor EIPA, whereas stimulation by oxalate was blocked by omission of sulfate from the perfusion solutions. These observations were consistent with recycling of formate from lumen to cell by H+-coupled formate transport in parallel with Na+-H+ exchange and recycling of oxalate by oxalate-sulfate exchange in parallel with Na+-sulfate cotransport. Using isoform-specific antibodies, we found that NHE1 is present on the basolateral membrane of all nephron segments, whereas NHE3 is present on the apical membrane of cells in the proximal tubule and the loop of Henle. The inhibitor sensitivity of Na+-H+ exchange in renal brush-border vesicles and of HCO3- absorption in microperfused tubules suggested that NHE3 is responsible for most, if not all, apical membrane Na+-H+ exchange in the proximal tubule. The role of NHE3 in mediating proximal tubule HCO3- absorption and formate-dependent Cl- absorption was confirmed by studies in NHE3 null mice. Finally, we cloned and functionally expressed CFEX, an anion transporter expressed on the apical surface of proximal tubule cells and capable of mediating Cl(-)-formate exchange.  相似文献   

7.
8.
A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO(3)(-). Here, we examined the role of the apical NHE3 and basolateral NHE1 Na(+)/H(+) exchangers in this adaptation. MTALs from rats drinking H(2)O or 0.28 M NaCl for 5-7 days were perfused in vitro. High sodium intake increased HCO(3)(-) absorption rate by 60%. The increased HCO(3)(-) absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO(3)(-) absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na(+)/H(+) exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na(+)/H(+) exchange activity by 30% under conditions in which basolateral Na(+)/H(+) exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO(3)(-) absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO(3)(-) absorption. The adaptive increases in Na(+)/H(+) exchange activity and HCO(3)(-) absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance.  相似文献   

9.
Na-nutrient cotransport processes are not only important for the assimilation of essential nutrients but also for the absorption of Na in the mammalian small intestine. The effect of constitutive nitric oxide (cNO) on Na-glucose (SGLT-1) and Na-amino acid cotransport (NAcT) in the mammalian small intestine is unknown. Inhibition of cNO synthase with N(G)-nitro-l-arginine methyl ester (L-NAME) resulted in the inhibition of Na-stimulated (3)H-O-methyl-D-glucose uptake in villus cells. However, Na-stimulated alanine uptake was not affected in these cells. The L-NAME-induced reduction in SGLT-1 in villus cells was not secondary to an alteration in basolateral membrane Na-K-ATPase activity, which provides the favorable Na gradient for this cotransport process. In fact, SGLT-1 was inhibited in villus cell brush-border membrane (BBM) vesicles prepared from animals treated with L-NAME. Kinetic studies demonstrated that the mechanism of inhibition of SGLT-1 was secondary to a decrease in the affinity for glucose without a change in the maximal rate of uptake of glucose. Northern blot studies demonstrated no change in the mRNA levels of SGLT-1. Western blot studies demonstrated no significant change in the immunoreactive protein levels of SGLT-1 in ileal villus cell BBM from L-NAME-treated rabbits. These studies indicate that inhibition of cNO production inhibits SGLT-1 but not NAcT in the rabbit small intestine. Therefore, whereas cNO promotes Na-glucose cotransport, it does not affect NAcT in the mammalian small intestine.  相似文献   

10.
Sodium/proton exchangers [Na(+)/H(+) (NHEs)] play an important role in salt and water absorption from the intestinal tract. To investigate the contribution of the apical membrane NHEs, NHE2 and NHE3, to electroneutral NaCl absorption, we measured radioisotopic Na(+) and Cl(-) flux across isolated jejuna from wild-type [NHE(+)], NHE2 knockout [NHE2(-)], and NHE3 knockout [NHE3(-)] mice. Under basal conditions, NHE(+) and NHE2(-) jejuna had similar rates of net Na(+) (approximately 6 microeq/cm(2) x h) and Cl(-) (approximately 3 microeq/cm(2) x h) absorption. In contrast, NHE3(-) jejuna had reduced net Na(+) absorption (approximately 2 microeq/cm(2) x h) but absorbed Cl(-) at rates similar to NHE(+) and NHE2(-) jejuna. Treatment with 100 microM 5-(N-ethyl-N-isopropyl) amiloride (EIPA) completely inhibited net Na(+) and Cl(-) absorption in all genotypes. Studies of the Na(+) absorptive flux (J) indicated that J in NHE(+) jejunum was not sensitive to 1 microM EIPA, whereas J in NHE3(-) jejunum was equally sensitive to 1 and 100 microM EIPA. Treatment with forskolin/IBMX to increase intracellular cAMP (cAMP(i)) abolished net NaCl absorption and stimulated electrogenic Cl(-) secretion in all three genotypes. Quantitative RT-PCR of epithelia from NHE2(-) and NHE3(-) jejuna did not reveal differences in mRNA expression of NHE3 and NHE2, respectively, when compared with jejunal epithelia from NHE(+) siblings. We conclude that 1) NHE3 is the dominant NHE involved in small intestinal Na(+) absorption; 2) an amiloride-sensitive Na(+) transporter partially compensates for Na(+) absorption in NHE3(-) jejunum; 3) cAMP(i) stimulation abolishes net Na(+) absorption in NHE(+), NHE2(-), and NHE3(-) jejunum; and 4) electroneutral Cl(-) absorption is not directly dependent on either NHE2 or NHE3.  相似文献   

11.
In response to volume expansion, locally generated dopamine decreases proximal tubule reabsorption by reducing both Na/H-exchanger 3 (NHE3) and Na-K-ATPase activity. We have previously demonstrated that mouse proximal tubules in vitro respond to changes in luminal flow with proportional changes in Na(+) and HCO(3)(-) reabsorption and have suggested that this observation underlies glomerulotubular balance. In the present work, we investigate the impact of dopamine on the sensitivity of reabsorptive fluxes to changes in luminal flow. Mouse proximal tubules were microperfused in vitro at low and high flow rates, and volume and HCO(3)(-) reabsorption (J(v) and J(HCO3)) were measured, while Na(+) and Cl(-) reabsorption (J(Na) and J(Cl)) were estimated. Raising luminal flow increased J(v), J(Na), and J(HCO3) but did not change J(Cl). Luminal dopamine did not change J(v), J(Na), and J(HCO3) at low flow rates but completely abolished the increments of Na(+) absorption by flow and partially inhibited the flow-stimulated HCO(3)(-) absorption. The remaining flow-stimulated HCO(3)(-) absorption was completely abolished by bafilomycin. The DA1 receptor blocker SCH23390 and the PKA inhibitor H89 blocked the effect of exogenous dopamine and produced a two to threefold increase in the sensitivity of proximal Na(+) reabsorption to luminal flow rate. Under the variety of perfusion conditions, changes in cell volume were small and did not always parallel changes in Na(+) transport. We conclude that 1) dopamine inhibits flow-stimulated NHE3 activity by activation of the DA1 receptor via a PKA-mediated mechanism; 2) dopamine has no effect on flow-stimulated H-ATPase activity; 3) there is no evidence of flow stimulation of Cl(-) reabsorption; and 4) the impact of dopamine is a coordinated modulation of both luminal and peritubular Na(+) transporters.  相似文献   

12.
In the renal medullary thick ascending limb (MTAL), inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with amiloride or nerve growth factor (NGF) results secondarily in inhibition of the apical NHE3 Na(+)/H(+) exchanger, thereby decreasing transepithelial HCO3- absorption. MTALs from rats were studied by in vitro microperfusion to identify the mechanism underlying cross-talk between the two exchangers. The basolateral addition of 10 microM amiloride or 0.7 nM NGF decreased HCO3- absorption by 27-32%. Jasplakinolide, which stabilizes F-actin, or latrunculin B, which disrupts F-actin, decreased basal HCO3- absorption by 30% and prevented the inhibition by amiloride or NGF. Jasplakinolide had no effect on HCO3- absorption in tubules bathed with amiloride or a Na(+)-free bath to inhibit NHE1. Jasplakinolide and latrunculin B did not prevent inhibition of HCO3- absorption by vasopressin or stimulation by hyposmolality, factors that regulate HCO3- absorption through primary effects on apical Na(+)/H(+) exchange. Treatment of MTALs with amiloride or NGF for 15 min decreased polymerized actin with no change in total cell actin, as assessed both by fluorescence microscopy and by actin Triton X-100 solubility. Jasplakinolide prevented amiloride-induced actin remodeling. Vasopressin, which inhibits HCO3- absorption by an amount similar to that observed with amiloride and NGF but does not act via NHE1, did not affect cellular F-actin content. These results indicate that basolateral NHE1 regulates apical NHE3 and HCO3- absorption in the MTAL by controlling the organization of the actin cytoskeleton.  相似文献   

13.
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.  相似文献   

14.
It has previously been shown (Baroin, A., F. Garcia-Romeu, T. Lamarre, and R. Motais. 1984a, b. Journal of Physiology. 350:137, 356:21; Mahé, Y., F. Garcia-Romeu, and R. Motais. 1985. European Journal of Pharmacology. 116:199) that the addition of catecholamines to an isotonic suspension of nucleated red blood cells of the rainbow trout first stimulates a cAMP-dependent, amiloride-sensitive Na+/H+ exchange. This stimulation seems to be transient. It is followed by a more permanent activation of a coupled entry of Na+ and Cl-, which is inhibited by amiloride but also by inhibitors of band 3 protein (DIDS, furosemide, niflumic acid). The coupled entry of Na+ and Cl- could therefore result from the parallel and simultaneous exchange of Na+out for H+in (via the cAMP-dependent Na+/H+ antiporter) and Cl- out for HCO3- in (via the anion exchange system located in band 3 protein). However, in view of the following arguments, it had been proposed that NaCl uptake does not proceed by the double-exchanger system but via an NaCl cotransport: (a) Na+ entry requires Cl- as anion (in NO3- medium, the Na uptake is strongly inhibited, whereas NO3- is an extremely effective substitute for Cl- in the anion exchange system); (b) Na uptake is not significantly affected by the presence of HCO3- in the suspension medium despite the fact that in red cells, Cl-/HCO3- exchange occurs more readily than the exchanges of Cl- for basic equivalents in a theoretically CO2-free medium (the so-called Cl-/OH- exchanges). The purpose of the present paper was a reassessment of the two models by using monensin, an ionophore allowing Na+/H+ exchange. From this study, it appears that NaCl entry results from the simultaneous functioning of the Na+/H+ antiporter and the anion exchange system. The apparent Cl dependence is explained by the fact that, in these erythrocytes, NO3- clearly inhibits the turnover rate of the Na+/H+ antiporter. As Na+/H+ exchange is the driving component in the salt uptake process, this inhibition explains the Cl requirement for Na entry. The lack of stimulation of cell swelling by bicarbonate is explained by the fact that the rate of anion exchange in a CO2-free medium (Cl-/OH- exchange) is roughly equivalent to that of Na+/H+ exchange and thus in practice is not limiting to the net influx of NaCl through the two exchangers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Intestinal electroneutral NaCl absorption is mediated by parallel operation of Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange in the enterocyte apical membrane. The ion transporters involved are Na(+)/H(+) exchanger 3 (NHE3) and the down regulated in adenoma (dra) gene product. cAMP-mediated inhibition of NHE3 requires the transporter to bind to the second PDZ (PSD95, disk large, ZO1) domain of the adapter protein NHE3 kinase A regulatory protein (E3KARP). Because the C-terminal four amino acids of dra are ETKF (glutamate-threonine-lysine-phenylalanine), resembling a PDZ interaction motif, we hypothesized that dra may also bind to one of the PDZ domains of E3KARP. In vitro the ETKF motif of dra binds to the second PDZ domain of E3KARP, the affinity being comparable to that of the known ligand CFTR. The C-terminal phenylalanine, which is an unconventional residue in PDZ interaction motifs, can only be substituted by the classical residue leucine, but not by other hydrophobic residues (valine, isoleucine). Immunofluorescence colocalizes dra, NHE3, and E3KARP in the apical compartment of human proximal colon. We suggest a model in which both NHE3 and dra bind to the second PDZ domain of E3KARP and that linking of the transporters occurs through dimerization of E3KARP. In such a model, the first PDZ domain would remain available for instance for signal transduction proteins.  相似文献   

16.
On exposure to hyposmotic acidic water, teleost fish suffer from decreases in blood osmolality and pH, and consequently activate osmoregulatory and acid-base regulatory mechanisms to restore disturbed ion and acid-base balances. In Mozambique tilapia Oreochromis mossambicus exposed to acidic (pH 4.0) or neutral (pH 7.4-7.7) freshwater in combination with 0mM or 50mM NaCl, we examined functional and morphological changes in gill mitochondria-rich (MR) cells. We assessed gene expression of Na(+)/H(+) exchanger-3 (NHE3), Na(+)/Cl(-) cotransporter (NCC), vacuolar-type H(+)-ATPase (V-ATPase) and Na(+)/HCO(3)(-) cotransporter-1 (NBC1) in the gills. The mRNA expression of NHE3 and NCC in tilapia gills were higher in acidic freshwater than in that supplemented with 50mM NaCl, while there was no significant difference in mRNA levels of V-ATPase and NBC1. In addition, immunocytochemical observations showed that apical-NHE3 MR cells were enlarged, and frequently formed multicellular complexes with developed deep apical openings in acidic freshwater with 0mM and 50mM NaCl. These findings suggest that gill MR cells respond to external salinity and pH treatments, by parallel manipulation of osmoregulatory and acid-base regulatory mechanisms.  相似文献   

17.
Multiple Na(+)/H(+) exchangers (NHEs) are expressed in salivary gland cells; however, their functions in the secretion of saliva by acinar cells and the subsequent modification of the ionic composition of this fluid by the ducts are unclear. Mice with targeted disruptions of the Nhe1, Nhe2, and Nhe3 genes were used to study the in vivo functions of these exchangers in parotid glands. Immunohistochemistry indicated that NHE1 was localized to the basolateral and NHE2 to apical membranes of both acinar and duct cells, whereas NHE3 was restricted to the apical region of duct cells. Na(+)/H(+) exchange was reduced more than 95% in acinar cells and greater than 80% in duct cells of NHE1-deficient mice (Nhe1(-/-)). Salivation in response to pilocarpine stimulation was reduced significantly in both Nhe1(-/-) and Nhe2(-/-) mice, particularly during prolonged stimulation, whereas the loss of NHE3 had no effect on secretion. Expression of Na(+)/K(+)/2Cl(-) cotransporter mRNA increased dramatically in Nhe1(-/-) parotid glands but not in those of Nhe2(-/-) or Nhe3(-/-) mice, suggesting that compensation occurs for the loss of NHE1. The sodium content, chloride activity and osmolality of saliva in Nhe2(-/-) or Nhe3(-/-) mice were comparable with those of wild-type mice. In contrast, Nhe1(-/-) mice displayed impaired NaCl absorption. These results suggest that in parotid duct cells apical NHE2 and NHE3 do not play a major role in Na(+) absorption. These results also demonstrate that basolateral NHE1 and apical NHE2 modulate saliva secretion in vivo, especially during sustained stimulation when secretion depends less on Na(+)/K(+)/2Cl(-) cotransporter activity.  相似文献   

18.
Bicarbonate is important for pHi control in cardiac cells. It is a major part of the intracellular buffer apparatus, it is a substrate for sarcolemmal acid-equivalent transporters that regulate intracellular pH, and it contributes to the pHo sensitivity of steady-state pHi, a phenomenon that may form part of a whole-body response to acid/base disturbances. Both bicarbonate and H+/OH- transporters participate in the sarcolemmal regulation of pHi, namely Na(+)-HCO3-cotransport (NBC), Cl(-)-HCO3- exchange (i.e., anion exchange, AE), Na(+)-H+ exchange (NHE), and Cl(-)-OH- exchange (CHE). These transporters are coupled functionally through changes of pHi, while pHi is linked to [Ca2+]i through secondary changes in [Na+] mediated by NBC and NHE. Via such coupling, decreases of pHo and pHi can ultimately lead to an elevation of [Ca2+]i, thereby influencing cardiac contractility and electrical rhythm. Bicarbonate is also an essential component of an intracellular carbonic buffer shuttle that diffusively couples cytoplasmic pH to the sarcolemma and minimises the formation of intracellular pH microdomains. The importance of bicarbonate is closely linked to the activity of the enzyme carbonic anhydrase (CA). Without CA activity, intracellular bicarbonate-dependent buffering, membrane bicarbonate transport, and the carbonic shuttle are severely compromised. There is a functional partnership between CA and HCO3- transport. Based on our observations on intracellular acid mobility, we propose that one physiological role for CA is to act as a pH-coupling protein, linking bulk pH to the allosteric H+ control sites on sarcolemmal acid/base transporters.  相似文献   

19.
To examine whether Cl-coupled HCO3 transport mechanisms were present on the basolateral membrane of the mammalian proximal tubule, cell pH was measured in the microperfused rat proximal convoluted tubule using the pH-sensitive, intracellularly trapped fluorescent dye (2',7')- bis(carboxyethyl)-(5,6)-carboxyfluorescein. Increasing the peritubular Cl concentration from 0 to 128.6 meq/liter caused cell pH to decrease from 7.34 +/- 0.04 to 7.21 +/- 0.04 (p less than 0.001). With more acid extracellular fluid (pH 6.62), a similar increase in the peritubular Cl concentration caused cell pH to decrease by a similar amount from 6.97 +/- 0.04 to 6.84 +/- 0.05 (p less than 0.001). This effect was blocked by 1 mM SITS. To examine the Na dependence of Cl/HCO3 exchange, the above studies were repeated in the absence of luminal and peritubular Na. In alkaline Na-free solutions, peritubular Cl addition caused cell pH to decrease from 7.57 +/- 0.06 to 7.53 +/- 0.06 (p less than 0.025); in acid Na-free solutions, peritubular Cl addition caused cell pH to decrease from 7.21 +/- 0.04 to 7.19 +/- 0.04 (p less than 0.05). The effect of Cl on cell pH was smaller in the absence of luminal and peritubular Na than in its presence. To examine whether the previously described Na/(HCO3)n greater than 1 cotransporter was coupled to or dependent on Cl, the effect of lowering the peritubular Na concentration from 147 to 25 meq/liter was examined in the absence of ambient Cl. Cell pH decreased from 7.28 +/- 0.03 to 7.08 +/- 0.03, a response similar to that observed previously in the presence of Cl. The results demonstrate that Cl/HCO3 (or Cl/OH) exchange is present on the basolateral membrane. Most of Cl/HCO3 exchange is dependent on the presence of Na and may be coupled to it. The previously described Na/(HCO3)n greater than 1 cotransporter is the major basolateral membrane pathway for the coupling of Na and HCO3 and is not coupled to Cl.  相似文献   

20.
Rotaviral diarrheal illness is one of the most common infectious diseases in children worldwide, but our understanding of its pathophysiology is limited. This study examines whether the enhanced net chloride secretion during rotavirus infection in young rabbits may occur as a result of hypersecretion in crypt cells that would exceed the substantial Cl(-) reabsorption observed in villi. By using a rapid filtration technique, we evaluated transport of (36)Cl and D-(14)C glucose across brush border membrane (BBM) vesicles purified from villus tip and crypt cells isolated in parallel from the entire small intestine. Rotavirus infection impaired SGLT1-mediated Na(+)-D-glucose symport activity in both villus and crypt cell BBM, hence contributing to the massive water loss along the cryptvillus axis. In the same BBM preparations, rotavirus failed to stimulate the Cl(-) transport activities (Cl(-)/H(+) symport, Cl(-)/anion exchange and voltage-activated Cl(-) conductance) at the crypt level, but not at the villus level, questioning, therefore, the origin of net chloride secretion. We propose that the chloride carrier might function in both normal (absorption) and reversed (secretion) modes in villi, depending on the direction of the chloride electrochemical gradient resulting from rotavirus infection, agreeing with our results that rotavirus accelerated both Cl(-) influx and Cl(-) efflux rates across villi BBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号