首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Ran binding protein RanBP1 is localized to the cytosol of interphase cells. A leucine-rich nuclear export signal (NES) near the C terminus of RanBP1 is essential to maintain this distribution. We now show that RanBP1 accumulates in nuclei of cells treated with the export inhibitor, leptomycin B, and collapse of the nucleocytoplasmic Ran:GTP gradient leads to equilibration of RanBP1 across the nuclear envelope. Low temperature prevents nuclear accumulation of RanBP1, suggesting that import does not occur via simple diffusion. Glutathione S-transferase (GST)-RanBP1(1-161), which lacks the NES, accumulates in the nucleus after cytoplasmic microinjection. In permeabilized cells, nuclear accumulation of GST-RanBP1(1-161) requires nuclear Ran:GTP but is not inhibited by a dominant interfering G19V mutant of Ran. Nuclear accumulation is enhanced by addition of exogenous karyopherins/importins or RCC1, both of which also enhance nuclear Ran accumulation. Import correlates with Ran concentration. Remarkably, an E37K mutant of RanBP1 does not import into the nuclei under any conditions tested despite the fact that it can form a ternary complex with Ran and importin beta. These data indicate that RanBP1 translocates through the pores by an active, nonclassical mechanism and requires Ran:GTP for nuclear accumulation. Shuttling of RanBP1 may function to clear nuclear pores of Ran:GTP, to prevent premature release of import cargo from transport receptors.  相似文献   

3.
The zinc finger antiviral protein (ZAP) is a recently isolated host antiviral factor. It specifically inhibits the replication of Moloney murine leukemia virus (MMLV) and Sindbis virus (SIN) by preventing the accumulation of viral RNA in the cytoplasm. In this report, we demonstrate that ZAP is predominantly localized in the cytoplasm at steady state but shuttles between the nucleus and the cytoplasm in a CRM1-dependent manner. Two nuclear localization sequences (NLS) and one nuclear export sequence (NES) were identified. One NLS was mapped to amino acids 68-RARVCRRK-75 and the other mapped to a region including amino acids K405 and K406. The NES was mapped to amino acids 284-LEDVSVDV-291. These findings help to understand why ZAP specifically prevents the accumulation of viral RNA in the cytoplasm. These findings also suggest possible functions of ZAP in the nucleus.  相似文献   

4.
5.
Despite ERK1 and ERK2 were considered interchangeable isoforms for a long time, their roles are now emerging as only partially overlapping. We recently reported that the nucleocytoplasmic trafficking of GFP-tagged ERK1 is slower than that of ERK2, this difference being caused by a unique domain of ERK1 located at its N-terminus (ERK1-Nt). In the present report we further investigated this issue by asking which were the specific aminoacids involved in such process. By photobleaching strategy, we demonstrated that ERK1-Nt is a domain capable to slow down the nucleocytoplasmic shuttling rate even of a small cargo protein. ERK1-Nt was then dissected into three regions as follows: 1 (aa 1-9), 2 (aa 10-29) and 3, (aa 30-39) that were deleted or mutated at specific sites. Dynamic imaging assessment of the role played by each region in determining the shuttling rate revealed that: region 1 has no significant role, region 2 and specific aminoacids of region 3 (V31, K33, P36) are critical, but singularly do not totally account for the difference in the shuttling rate between ERK1 and 2. Finally, we demonstrated that the nucleocytoplasmic shuttling rate of a passively diffusing protein (mRED) is inversely related to ERK1-Nt-GFP concentrations inside the cell, thus suggesting that ERK1-Nt-GFP occupies the nuclear pore perhaps because of an important affinity of ERK1-Nt for nucleoporins.In conclusion, ERK1-Nt is a domain able per se to confer a slower shuttling rate to a cargo protein. Specific regions within this domain were identified as responsible for this biophysical property.  相似文献   

6.
Nucleosome assembly protein 1 (Nap1) is widely conserved from yeasts to humans and facilitates nucleosome formation in vitro as a histone chaperone. Nap1 is generally localized in the cytoplasm, except that subcellular localization of Drosophila melanogaster Nap1 is dynamically regulated between the cytoplasm and nucleus during early development. The cytoplasmic localization of Nap1 is seemingly incompatible with the proposed role of Nap1 in nucleosome formation, which should occur in the nucleus. Here, we have examined the roles of a putative nuclear export signal (NES) sequence in yeast Nap1 (yNap1). yNap1 mutants lacking the NES-like sequence were localized predominantly in the nucleus. Deletion of NAP1 in cells harboring a single mitotic cyclin gene is known to cause mitotic delay and temperature-sensitive growth. A wild-type NAP1 complemented these phenotypes while nap1 mutant genes lacking the NES-like sequence or carboxy-terminal region did not. These and other results suggest that yNap1 is a nucleocytoplasmic shuttling protein and that its shuttling is important for yNap1 function during mitotic progression. This study also provides a possible explanation for Nap1's involvement in nucleosome assembly and/or remodeling in the nucleus.  相似文献   

7.
Disabled1 (DAB1) is an intracellular mediator of the Reelin-signaling pathway and essential for correct neuronal positioning during brain development. So far, DAB1 has been considered a cytoplasmic protein. Here, we show that DAB1 is subject to nucleocytoplasmic shuttling. In its steady state, DAB1 is mainly located in the cytoplasm. However, treatment with leptomycine B, a specific inhibitor of the CRM1 (chromosomal region maintenance 1)-RanGTP-dependent nuclear export, resulted in nuclear accumulation of DAB1. By using deletion or substitutional mutants of DAB1 fused with enhanced green fluorescent protein, we have mapped a bipartite nuclear localization signal and two CRM1-dependent nuclear export signals. These targeting signals were functional in both Neuro2a cells and primary cerebral cortical neurons. Using purified recombinant proteins, we have shown that CRM1 binds to DAB1 directly in a RanGTP-dependent manner. We also show that tyrosine phosphorylation of DAB1, which is indispensable for the layer formation of the brain, by Fyn tyrosine kinase or Reelin stimulation did not affect the subcellular localization of DAB1 in vitro. These results suggest that DAB1 is a nucleocytoplasmic shuttling protein and raise the possibility that DAB1 plays a role in the nucleus as well as in the cytoplasm.  相似文献   

8.
9.
Gle1 is required for mRNA export in yeast and human cells. Here, we report that two human Gle1 (hGle1) isoforms are expressed in HeLa cells (hGle1A and B). The two encoded proteins are identical except for their COOH-terminal regions. hGle1A ends with a unique four-amino acid segment, whereas hGle1B has a COOH-terminal 43-amino acid span. Only hGle1B, the more abundant isoform, localizes to the nuclear envelope (NE) and pore complex. To test whether hGle1 is a dynamic shuttling transport factor, we microinjected HeLa cells with recombinant hGle1 and conducted photobleaching studies of live HeLa cells expressing EGFP-hGle1. Both strategies show that hGle1 shuttles between the nucleus and cytoplasm. An internal 39-amino acid domain is necessary and sufficient for mediating nucleocytoplasmic transport. Using a cell-permeable peptide strategy, we document a role for hGle1 shuttling in mRNA export. An hGle1 shuttling domain (SD) peptide impairs the export of both total poly(A)+ RNA and the specific dihydrofolate reductase mRNA. Coincidentally, SD peptide-treated cells show decreased endogenous hGle1 localization at the NE and reduced nucleocytoplasmic shuttling of microinjected, recombinant hGle1. These findings pinpoint the first functional motif in hGle1 and link hGle1 to the dynamic mRNA export mechanism.  相似文献   

10.
The crystal structure has been determined at 3.0 A resolution for an unphosphorylated STAT1 (1-683) complexed with a phosphopeptide derived from the alpha chain of interferon gamma (IFNgamma) receptor. Two dimer interfaces are seen, one between the N domains (NDs) (amino acid residues 1-123) and the other between the core fragments (CFs) (residues 132-683). Analyses of the wild-type (wt) and mutant STAT1 proteins by static light scattering, analytical ultracentrifugation, and coimmunoprecipitation suggest that STAT1 is predominantly dimeric prior to activation, and the dimer is mediated by the ND interactions. The connecting region between the ND and the CF is flexible and allows two interconvertable orientations of the CFs, termed "antiparallel" or "parallel," as determined by SH2 domain orientations. Functional implications of these dimer conformations are discussed. Also revealed in this structure is the detailed interaction between STAT1 SH2 domain and its docking site on IFNgamma receptor.  相似文献   

11.
12.
13.
14.
15.
16.
Ligand inducible proteins that enable precise and reversible control of nuclear translocation of passenger proteins have broad applications ranging from genetic studies in mammals to therapeutics that target diseases such as cancer and diabetes. One of the drawbacks of the current translocation systems is that the ligands used to control nuclear localization are either toxic or prone to crosstalk with endogenous protein cascades within live animals. We sought to take advantage of salicylic acid (SA), a small molecule that has been extensively used in humans. In plants, SA functions as a hormone that can mediate immunity and is sensed by the nonexpressor of pathogenesis-related (NPR) proteins. Although it is well recognized that nuclear translocation of NPR1 is essential to promoting immunity in plants, the exact subdomain of Arabidopsis thaliana NPR1 (AtNPR1) essential for SA-mediated nuclear translocation is controversial. Here, we utilized the fluorescent protein mCherry as the reporter to investigate the ability of SA to induce nuclear translocation of the full-length NPR1 protein or its C-terminal transactivation (TAD) domain using HEK293 cells as a heterologous system. HEK293 cells lack accessory plant proteins including NPR3/NPR4 and are thus ideally suited for studying the impact of SA-induced changes in NPR1. Our results obtained using a stable expression system show that the TAD of AtNPR1 is sufficient to enable the reversible SA-mediated nuclear translocation of mCherry. Our studies advance a basic understanding of nuclear translocation mediated by the TAD of AtNPR1 and uncover a biotechnological tool for SA-mediated nuclear localization.  相似文献   

17.
The spatial separation of mRNA synthesis from translation, while providing eukaryotes with the possibility to achieve higher complexity through a more elaborate regulation of gene expression, has set the need for transport mechanisms through the nuclear envelope. In a simplistic view of nucleocytoplasmic transport, nuclear proteins are imported into the nucleus while RNAs are exported to the cytoplasm. The reality is, however, that transport of either proteins or RNAs across the nuclear envelope can be bi-directional. During the past years, an increasing number of proteins have been identified that shuttle continuously back and forth between the nucleus and the cytoplasm. The emerging picture is that shuttling proteins are key factors in conveying information on nuclear and cytoplasmic activities within the cell.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号