首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory allergic diseases appear to be increasingin both prevalence and severity in most countries, andsubjects living in urban and industrialized areas aremore likely to have respiratory allergic symptoms thanthose living in rural areas. This increase has beenlinked, among various factors, to air pollution and tothe westernized lifestyle. In the outdoor environment,the most important air pollutants are sulphur dioxide,nitrogen dioxide, ozone and particulate matter.Particulate diesel exhaust emissions, besides actingas irritant, are thought to modulate the immuneresponse, with an adjuvant activity on IgE synthesis,thereby facilitating allergic sensitization inpredisposed subjects. In other words, atopic statecan be upregulated by environmental influences, andsome subjects develop atopic disease in response tothese environmental factors when they are inhaled incombination with aeroallergens. Moreover, airpollutants produce greater responses in asthmaticsubjects. Since airborne pollen allergens and airpollutants are often increased contemporaneously, anenhanced IgE-mediated response to aeroallergens andenhanced airway inflammation could account for theincreasing frequency of allergic respiratory diseases,in particular those induced by pollen allergens, inurban areas.  相似文献   

2.
Being major ornamental street trees, species of Platanus are widely planted in the Shanghai urban area. A great deal of allergenic Platanus pollen is released from the trees and suspended in the atmosphere during its flowering season, ultimately causing allergic respiratory diseases. Few papers have focused on the distribution of this type of pollen and its expression of allergenic proteins. In order to investigate any differences in protein expression in Platanus pollen following exposure to gaseous and particulate pollutants, a special apparatus was designed. Exposure condition (such as temperature, humidity, and exposure time) of Platanus pollen and gaseous pollutants can be simulated using of this apparatus. Fresh Platanus orientalis pollen, pollutant gases (NO2, SO2, NH3), and typical urban ambient particles (vehicle exhaust particles, VEPs) were mixed in this device to examine possible changes that might occur in ambient airborne urban pollen following exposure to such pollutants. Our results showed that the fresh P. orientalis pollen became swollen, and new kinds of particles could be found on the surface of the pollen grains after exposure to the pollutants. The results of SDS-PAGE showed that five protein bands with molecular weights of 17–19, 34, 61, 82, and 144 kDa, respectively, were detected and gray scale of these brands increased after the pollen exposure to gaseous pollutants. The two-dimensional gel electrophoresis analysis demonstrated that a Platanus pollen allergenic protein (Pla a1, with a molecular weight of 18 kDa) increased in abundance following exposure to pollutant gases and VEPs, implying that air pollutants may exacerbate the allergenicity of pollen.  相似文献   

3.
Oxidative stress-induced DNA damage by particulate air pollution   总被引:14,自引:0,他引:14  
Risom L  Møller P  Loft S 《Mutation research》2005,592(1-2):119-137
Exposure to ambient air particulate matter (PM) is associated with pulmonary and cardiovascular diseases and cancer. The mechanisms of PM-induced health effects are believed to involve inflammation and oxidative stress. The oxidative stress mediated by PM may arise from direct generation of reactive oxygen species from the surface of particles, soluble compounds such as transition metals or organic compounds, altered function of mitochondria or NADPH-oxidase, and activation of inflammatory cells capable of generating ROS and reactive nitrogen species. Resulting oxidative DNA damage may be implicated in cancer risk and may serve as marker for oxidative stress relevant for other ailments caused by particulate air pollution. There is overwhelming evidence from animal experimental models, cell culture experiments, and cell free systems that exposure to diesel exhaust and diesel exhaust particles causes oxidative DNA damage. Similarly, various preparations of ambient air PM induce oxidative DNA damage in in vitro systems, whereas in vivo studies are scarce. Studies with various model/surrogate particle preparations, such as carbon black, suggest that the surface area is the most important determinant of effect for ultrafine particles (diameter less than 100 nm), whereas chemical composition may be more important for larger particles. The knowledge concerning mechanisms of action of PM has prompted the use of markers of oxidative stress and DNA damage for human biomonitoring in relation to ambient air. By means of personal monitoring and biomarkers a few studies have attempted to characterize individual exposure, explore mechanisms and identify significant sources to size fractions of ambient air PM with respect to relevant biological effects. In these studies guanine oxidation in DNA has been correlated with exposure to PM(2.5) and ultrafine particles outdoor and indoor. Oxidative stress-induced DNA damage appears to an important mechanism of action of urban particulate air pollution. Related biomarkers and personal monitoring may be useful tools for risk characterization.  相似文献   

4.
Epidemiological studies have clearly shown a relationship between respiratory diseases and air pollution. Ozone and ambient particles are the main pollutants contributing to the exacerbation of these pathologies. Their toxicity resides in their ability to generate an oxidative stress. The level of oxidative stress and the specificity of the cellular responses result from complex interactions between pro- and anti-oxidants, leading to differentiated cellular strategies. Hierarchical biological responses: adaptation, inflammation, lesions, can be determined according to the oxidative insult and individual anti-oxidant capacities. A better health risk assessment could be achieved by taking into account the oxidative properties of air pollution especially those of ultrafine particles.  相似文献   

5.
To identify gene expression responses common to multiple pulmonary diseases we collected microarray data for acute lung inflammation models from 12 studies and used these in a meta-analysis. The data used include exposures to air pollutants; bacterial, viral, and parasitic infections; and allergic asthma models. Hierarchical clustering revealed a cluster of 383 up-regulated genes with a common response. This cluster contained five subsets, each characterized by more specific functions such as inflammatory response, interferon-induced genes, immune signaling, or cell proliferation. Of these subsets, the inflammatory response was common to all models, interferon-induced responses were more pronounced in bacterial and viral models, and a cell division response was more prominent in parasitic and allergic models. A common cluster containing 157 moderately down-regulated genes was associated with the effects of tissue damage. Responses to influenza in macaques were weaker than in mice, reflecting differences in the degree of lung inflammation and/or virus replication. The existence of a common cluster shows that in vivo lung inflammation in response to various pathogens or exposures proceeds through shared molecular mechanisms.  相似文献   

6.

Background

According to the World Health Organization, air pollution is closely associated with climate change and, in particular, with global warming. In addition to melting of ice and snow, rising sea level, and flooding of coastal areas, global warming is leading to a tropicalization of temperate marine ecosystems. Moreover, the effects of air pollution on airway and lung diseases are well documented as reported by the World Allergy Organization.

Methods

Scientific literature was searched for studies investigating the effect of the interaction between air pollution and climate change on allergic and respiratory diseases.

Results

Since 1990s, a multitude of articles and reviews have been published on this topic, with many studies confirming that the warming of our planet is caused by the “greenhouse effect” as a result of increased emission of “greenhouse” gases. Air pollution is also closely linked to global warming: the emission of hydrocarbon combustion products leads to increased concentrations of biological allergens such as pollens, generating a mixture of these particles called particulate matter (PM). The concept is that global warming is linked to the emission of hydrocarbon combustion products, since both carbon dioxide and heat increase pollen emission into the atmosphere, and all these particles make up PM10. However, the understanding of the mechanisms by which PM affects human health is still limited. Therefore, several studies are trying to determine the causes of global warming. There is also evidence that increased concentrations of air pollutants and pollens can activate inflammatory mediators in the airways. Our Task Force has prepared a Decalogue of rules addressing public administrators, which aims to limit the amount of allergenic pollen in the air without sacrificing public green areas.

Conclusions

Several studies underscore the significant risks of global warming on human health due to increasing levels of air pollution. The impact of climate change on respiratory diseases appears well documented. The last decades have seen a rise in the concentrations of pollens and pollutants in the air. This rise parallels the increase in the number of people presenting with allergic symptoms (e.g., allergic rhinitis, conjunctivitis, and asthma), who often require emergency medical care. Our hope is that scientists from different disciplines will work together with institutions, pharmaceutical companies and lay organizations to limit the adverse health effects of air pollution and global warming.
  相似文献   

7.
8.
Epidemiological evidence has concurred with clinical and experimental evidence to correlate current levels of ambient air pollution, both indoors and outdoors, with respiratory effects. In this respect, the use of specific epidemiological methods has been crucial. Common outdoor pollutants are particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and ozone. Short-term effects of outdoor air pollution include changes in lung function, respiratory symptoms and mortality due to respiratory causes. Increase in the use of health care resources has also been associated with short-term effects of air pollution. Long-term effects of cumulated exposure to urban air pollution include lung growth impairment, chronic obstructive pulmonary disease (COPD), lung cancer, and probably the development of asthma and allergies. Lung cancer and COPD have been related to a shorter life expectancy. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Further epidemiological research is necessary to better evaluate the respiratory health effects of air pollution and to implement protective programmes for public health.  相似文献   

9.
Some nonpathogenic bacteria were found to have protective effects in mouse models of allergic and autoimmune diseases. These "probiotics" are thought to interact with dendritic cells during Ag presentation, at the initiation of adaptive immune responses. Many other myeloid cells are the effector cells of immune responses. They are responsible for inflammation that accounts for symptoms in allergic and autoimmune diseases. We investigated in this study whether probiotics might affect allergic and autoimmune inflammation by acting at the effector phase of adaptive immune responses. The effects of one strain of Lactobacillus casei were investigated in vivo on IgE-induced passive systemic anaphylaxis and IgG-induced passive arthritis, two murine models of acute allergic and autoimmune inflammation, respectively, which bypass the induction phase of immune responses, in vitro on IgE- and IgG-induced mouse mast cell activation and ex vivo on IgE-dependent human basophil activation. L. casei protected from anaphylaxis and arthritis, and inhibited mouse mast cell and human basophil activation. Inhibition required contact between mast cells and bacteria, was reversible, and selectively affected the Lyn/Syk/linker for activation of T cells pathway induced on engagement of IgE receptors, leading to decreased MAPK activation, Ca(2+) mobilization, degranulation, and cytokine secretion. Also, adoptive anaphylaxis induced on Ag challenge in mice injected with IgE-sensitized mast cells was abrogated in mice injected with IgE-sensitized mast cells exposed to bacteria. These results demonstrate that probiotics can influence the effector phase of adaptive immunity in allergic and autoimmune diseases. They might, therefore, prevent inflammation in patients who have already synthesized specific IgE or autoantibodies.  相似文献   

10.
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.  相似文献   

11.
Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4+ T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.  相似文献   

12.
Allergen sensitization and allergic airway disease are likely to come about through the inhalation of Ag with immunostimulatory molecules. However, environmental pollutants, including nitrogen dioxide (NO2), may promote adaptive immune responses to innocuous Ags that are not by themselves immunostimulatory. We tested in C57BL/6 mice whether exposure to NO2, followed by inhalation of the innocuous protein Ag, OVA, would result in allergen sensitization and the subsequent development of allergic airway disease. Following challenge with aerosolized OVA alone, mice previously exposed via inhalation to NO2 and OVA developed eosinophilic inflammation and mucus cell metaplasia in the lungs, as well as OVA-specific IgE and IgG1, and Th2-type cytokine responses. One hour of exposure to 10 parts per million NO2 increased bronchoalveolar lavage fluid levels of total protein, lactate dehydrogenase activity, and heat shock protein 70; promoted the activation of NF-kappaB by airway epithelial cells; and stimulated the subsequent allergic response to Ag challenge. Furthermore, features of allergic airway disease were not induced in allergen-challenged TLR2-/- and MyD88-/- mice exposed to NO2 and aerosolized OVA during sensitization. These findings offer a mechanism whereby allergen sensitization and asthma may result under conditions of high ambient or endogenous NO2 levels.  相似文献   

13.
14.
Lung immune responses to respiratory pathogens and allergens are initiated in early life which will further influence the later onset of asthma. The airway epithelia form the first mechanical physical barrier to allergic stimuli and environmental pollutants, which is also the key regulator in the initiation and development of lung immune response. However, the epithelial regulation mechanisms of early-life lung immune responses are far from clear. Our previous study found that integrin β4 (ITGB4) is decreased in the airway epithelium of asthma patients with specific variant site. ITGB4 deficiency in adult mice aggravated the lung Th2 immune responses and enhanced airway hyper-responsiveness (AHR) with a house dust mite (HDM)-induced asthma model. However, the contribution of ITGB4 to the postnatal lung immune response is still obscure. Here, we further demonstrated that ITGB4 deficiency following birth mediates spontaneous lung inflammation with ILC2 activation and increased infiltration of eosinophils and lymphocytes. Moreover, ITGB4 deficiency regulated thymic stromal lymphopoietin (TSLP) production in airway epithelial cells through EGFR pathways. Neutralization of TSLP inhibited the spontaneous inflammation significantly in ITGB4-deficient mice. Furthermore, we also found that ITGB4 deficiency led to exaggerated lung allergic inflammation response to HDM stress. In all, these findings indicate that ITGB4 deficiency in early life causes spontaneous lung inflammation and induces exaggerated lung inflammation response to HDM aeroallergen.  相似文献   

15.
Increased exposure to air pollutants such as diesel exhaust particles (DEP) has been proposed as one mechanism to explain the rise in allergic disorders. However, the immunologic mechanisms by which DEP enhance allergic sensitization and asthma remain unclear. We hypothesized that DEP act as an adjuvant for immature dendritic cell (DC) maturation via its effect on airway epithelial cell-derived microenvironment for DC. Immature monocyte-derived DC (iMDDC) failed to undergo phenotypic (CD80, CD83, CD86) or functional (T cell activation) maturation in response to exposure to DEP (0.001-100 mug/ml). In contrast, primary cultures of human bronchial epithelial cells (HBEC) treated with DEP induced iMDDC phenotypic maturation (2.6 +/- 0.1-fold increase in CD83 expression, n = 4, p < 0.05) and functional maturation (2.6 +/- 0.2-fold increase in T cell activation, n = 4, p < 0.05). Functional maturation of iMDDC was induced by conditioned medium derived from DEP-treated HBEC, and was inhibited in cultures with DEP-treated HBEC and blocking Abs against GM-CSF, or GM-CSF-targeted small interfering RNA. These data suggest that DEP induce Ag-independent DC maturation via epithelial cell-DC interactions mediated by HBEC-derived GM-CSF. Although additional signals may be required for polarization of DC, these data suggest a novel mechanism by which environmental pollutants alter airway immune responses.  相似文献   

16.

Background

Particulate matter (PM) can exacerbate allergic airway diseases. Although health effects of PM with a diameter of less than 100 nm have been focused, few studies have elucidated the correlation between the sizes of particles and aggravation of allergic diseases. We investigated the effects of nano particles with a diameter of 14 nm or 56 nm on antigen-related airway inflammation.

Methods

ICR mice were divided into six experimental groups. Vehicle, two sizes of carbon nano particles, ovalbumin (OVA), and OVA + nano particles were administered intratracheally. Cellular profile of bronchoalveolar lavage (BAL) fluid, lung histology, expression of cytokines, chemokines, and 8-hydroxy-2''-deoxyguanosine (8-OHdG), and immunoglobulin production were studied.

Results

Nano particles with a diameter of 14 nm or 56 nm aggravated antigen-related airway inflammation characterized by infiltration of eosinophils, neutrophils, and mononuclear cells, and by an increase in the number of goblet cells in the bronchial epithelium. Nano particles with antigen increased protein levels of interleukin (IL)-5, IL-6, and IL-13, eotaxin, macrophage chemoattractant protein (MCP)-1, and regulated on activation and normal T cells expressed and secreted (RANTES) in the lung as compared with antigen alone. The formation of 8-OHdG, a proper marker of oxidative stress, was moderately induced by nano particles or antigen alone, and was markedly enhanced by antigen plus nano particles as compared with nano particles or antigen alone. The aggravation was more prominent with 14 nm of nano particles than with 56 nm of particles in overall trend. Particles with a diameter of 14 nm exhibited adjuvant activity for total IgE and antigen-specific IgG1 and IgE.

Conclusion

Nano particles can aggravate antigen-related airway inflammation and immunoglobulin production, which is more prominent with smaller particles. The enhancement may be mediated, at least partly, by the increased local expression of IL-5 and eotaxin, and also by the modulated expression of IL-13, RANTES, MCP-1, and IL-6.  相似文献   

17.
Understanding the pollution sensitivity of lichens   总被引:3,自引:0,他引:3  
RICHARDSON, D. H. S. 1988. Understanding the pollution sensitivity of lichens. Lichens have been widely used to monitor air quality in urban and industrial situations. This review summarizes the effects of the various components of air pollution including metals, sulphur dioxide and acid rain. The mechanisms leading to the accumulation of elements by lichens or induction of damage by air pollutants are discussed.  相似文献   

18.
Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus–pituitary–adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant — ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.  相似文献   

19.

Background

Particulate matter (PM) can exacerbate allergic airway diseases. Although health effects of PM with a diameter of less than 100 nm have been focused, few studies have elucidated the correlation between the sizes of particles and aggravation of allergic diseases. We investigated the effects of nano particles with a diameter of 14 nm or 56 nm on antigen-related airway inflammation.

Methods

ICR mice were divided into six experimental groups. Vehicle, two sizes of carbon nano particles, ovalbumin (OVA), and OVA + nano particles were administered intratracheally. Cellular profile of bronchoalveolar lavage (BAL) fluid, lung histology, expression of cytokines, chemokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and immunoglobulin production were studied.

Results

Nano particles with a diameter of 14 nm or 56 nm aggravated antigen-related airway inflammation characterized by infiltration of eosinophils, neutrophils, and mononuclear cells, and by an increase in the number of goblet cells in the bronchial epithelium. Nano particles with antigen increased protein levels of interleukin (IL)-5, IL-6, and IL-13, eotaxin, macrophage chemoattractant protein (MCP)-1, and regulated on activation and normal T cells expressed and secreted (RANTES) in the lung as compared with antigen alone. The formation of 8-OHdG, a proper marker of oxidative stress, was moderately induced by nano particles or antigen alone, and was markedly enhanced by antigen plus nano particles as compared with nano particles or antigen alone. The aggravation was more prominent with 14 nm of nano particles than with 56 nm of particles in overall trend. Particles with a diameter of 14 nm exhibited adjuvant activity for total IgE and antigen-specific IgG1 and IgE.

Conclusion

Nano particles can aggravate antigen-related airway inflammation and immunoglobulin production, which is more prominent with smaller particles. The enhancement may be mediated, at least partly, by the increased local expression of IL-5 and eotaxin, and also by the modulated expression of IL-13, RANTES, MCP-1, and IL-6.  相似文献   

20.
Aeroallergens, Allergic Disease, and Climate Change: Impacts and Adaptation   总被引:1,自引:0,他引:1  
Recent research has shown that there are many effects of climate change on aeroallergens and thus allergic diseases in humans. Increased atmospheric carbon dioxide concentration acts as a fertilizer for plant growth. The fertilizing effects of carbon dioxide, as well as increased temperatures from climate change, increase pollen production and the allergen content of pollen grains. In addition, higher temperatures are changing the timing and duration of the pollen season. As regional climates change, plants can move into new areas and changes in atmospheric circulation can blow pollen- and spore-containing dust to new areas, thus introducing people to allergens to which they have not been exposed previously. Climate change also influences the concentrations of airborne pollutants, which alone, and in conjunction with aeroallergens, can exacerbate asthma or other respiratory illnesses. The few epidemiological analyses of meteorological factors, aeroallergens, and allergic diseases demonstrate the pathways through which climate can exert its influence on aeroallergens and allergic diseases. In addition to the need for more research, there is the imperative to take preventive and adaptive actions to address the onset and exacerbation of allergic diseases associated with climate variability and change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号