首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulin receptor (IR) lacking the alternatively spliced exon 11 (IR-A) is preferentially expressed in fetal and cancer cells. The IR-A has been identified as a high-affinity receptor for insulin and IGF-II but not IGF-I, which it binds with substantially lower affinity. Several cancer cell types that express the IR-A also overexpress IGF-II, suggesting a possible autocrine proliferative loop. To determine the regions of IGF-I and IGF-II responsible for this differential affinity, chimeras were made where the C and D domains were exchanged between IGF-I and IGF-II either singly or together. The abilities of these chimeras to bind to, and activate, the IR-A were investigated. We also investigated the ability of these chimeras to bind and activate the IR exon 11+ isoform (IR-B) and as a positive control, the IGF-I receptor (IGF-1R). We show that the C domain and, to a lesser extent, the D domains represent the principal determinants of the binding differences between IGF-I and IGF-II to IR-A. The C and D domains of IGF-II promote higher affinity binding to the IR-A than the equivalent domains of IGF-I, resulting in an affinity close to that of insulin for the IR-A. The C and D domains also regulate the IR-B binding specificity of the IGFs in a similar manner, although the level of binding for all IGF ligands to IR-B is lower than to IR-A. In contrast, the C and D domains of IGF-I allow higher affinity binding to the IGF-1R than the analogous domains of IGF-II. Activation of IGF-1R by the chimeras reflected their binding affinities whereas the phosphorylation of the two IR isoforms was more complex.  相似文献   

2.
The insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) have a highly homologous structure, but different biological effects. Insulin and IGF-I half-receptors can heterodimerize, leading to the formation of insulin/IGF-I hybrid receptors (Hybrid-Rs) that bind IGF-I with high affinity. As the IR exists in two isoforms (IR-A and IR-B), we evaluated whether the assembly of the IGF-IR with either IR-A or IR-B moieties may differently affect Hybrid-R signaling and biological role. Three different models were studied: (a) 3T3-like mouse fibroblasts with a disrupted IGF-IR gene (R(-) cells) cotransfected with the human IGF-IR and with either the IR-A or IR-B cDNA; (b) a panel of human cell lines variably expressing the two IR isoforms; and (c) HepG2 human hepatoblastoma cells predominantly expressing either IR-A or IR-B, depending on their differentiation state. We found that Hybrid-Rs containing IR-A (Hybrid-Rs(A)) bound to and were activated by IGF-I, IGF-II, and insulin. By binding to Hybrid-Rs(A), insulin activated the IGF-I half-receptor beta-subunit and the IGF-IR-specific substrate CrkII. In contrast, Hybrid-Rs(B) bound to and were activated with high affinity by IGF-I, with low affinity by IGF-II, and insignificantly by insulin. As a consequence, cell proliferation and migration in response to both insulin and IGFs were more effectively stimulated in Hybrid-R(A)-containing cells than in Hybrid-R(B)-containing cells. The relative abundance of IR isoforms therefore affects IGF system activation through Hybrid-Rs, with important consequences for tissue-specific responses to both insulin and IGFs.  相似文献   

3.
4.
The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI) for inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression.  相似文献   

5.
Insulin receptor structure and its implications for the IGF-1 receptor   总被引:1,自引:0,他引:1  
The insulin receptor (isoforms IR-A and IR-B) and the type-I insulin-like growth factor receptor (IGF-1R) are homologous, multi-domain tyrosine kinases that bind insulin and IGF-1 with differing specificity. IR is involved in metabolic regulation and IGF-1R in normal growth and development. IR-A also binds IGF-2 with an affinity comparable to IGF-1R and, like the latter, is implicated in a range of cancers. The recent structure of the IR ectodomain dimer explains many features of ligand-receptor binding and provides insight into the structure of the intact ligand-binding site in both receptors. The structures of the L1-CR-L2 fragments of IR and IGF-1R reveal major differences in the regions that govern ligand specificity. The IR ectodomain X-ray structure raises doubts about that obtained by STEM reconstruction.  相似文献   

6.
To define the structures within the insulin receptor (IR) that are required for high affinity ligand binding, we have used IR fragments consisting of four amino-terminal domains (L1, cysteine-rich, L2, first fibronectin type III domain) fused to sequences encoded by exon 10 (including the carboxyl terminus of the alpha-subunit). The fragments contained one or both cysteine residues (amino acids 524 and 682) that form disulfides between alpha-subunits in native IR. A dimeric fragment designated IR593.CT (amino acids 1-593 and 704-719) bound (125)I-insulin with high affinity comparable to detergent-solubilized wild type IR and mIR.Fn0/Ex10 (amino acids 1-601 and 650-719) and greater than that of dimeric mIR.Fn0 (amino acids 1-601 and 704-719) and monomeric IR473.CT (amino acids 1-473 and 704-719). However, neither IR593.CT nor mIR.Fn0 exhibited negative cooperativity (a feature characteristic of the native insulin receptor and mIR.Fn0/Ex10), as shown by failure of unlabeled insulin to accelerate dissociation of bound (125)I-insulin. Anti-receptor monoclonal antibodies that recognize epitopes in the first fibronectin type III domain (amino acids 471-593) and inhibit insulin binding to wild type IR inhibited insulin binding to mIR.Fn0/Ex10 but not IR593.CT or mIR.Fn0. We conclude the following: 1) precise positioning of the carboxyl-terminal sequence can be a critical determinant of binding affinity; 2) dimerization via the first fibronectin domain alone can contribute to high affinity ligand binding; and 3) the second dimerization domain encoded by exon 10 is required for ligand cooperativity and modulation by antibodies.  相似文献   

7.
8.
Insulin-like growth factor II (IGF-II) is a peptide growth factor that is homologous to both insulin-like growth factor I (IGF-I) and insulin and plays an important role in embryonic development and carcinogenesis. IGF-II is believed to mediate its cellular signaling via the transmembrane tyrosine kinase type 1 insulin-like growth factor receptor (IGF-I-R), which is also the receptor for IGF-I. Earlier studies with both cultured cells and transgenic mice, however, have suggested that in the embryo the insulin receptor (IR) may also be a receptor for IGF-II. In most cells and tissues, IR binds IGF-II with relatively low affinity. The IR is expressed in two isoforms (IR-A and IR-B) differing by 12 amino acids due to the alternative splicing of exon 11. In the present study we found that IR-A but not IR-B bound IGF-II with an affinity close to that of insulin. Moreover, IGF-II bound to IR-A with an affinity equal to that of IGF-II binding to the IGF-I-R. Activation of IR-A by insulin led primarily to metabolic effects, whereas activation of IR-A by IGF-II led primarily to mitogenic effects. These differences in the biological effects of IR-A when activated by either IGF-II or insulin were associated with differential recruitment and activation of intracellular substrates. IR-A was preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney and had a relatively increased proportion of isoform A. IR-A expression was also increased in several tumors including those of the breast and colon. These data indicate, therefore, that there are two receptors for IGF-II, both IGF-I-R and IR-A. Further, they suggest that interaction of IGF-II with IR-A may play a role both in fetal growth and cancer biology.  相似文献   

9.
The insulin receptor (IR) is a dimeric receptor, and its activation is thought to involve cross-linking between monomers initiated by binding of a single insulin molecule to separate epitopes on each monomer. We have previously shown that a minimized insulin receptor consisting of the first three domains of the human IR fused to 16 amino acids from the C-terminal of the alpha-subunit was monomeric and bound insulin with nanomolar affinity (Kristensen, C., Wiberg, F. C., Sch?ffer, L., and Andersen, A. S. (1998) J. Biol. Chem. 273, 17780-17786). To investigate the insulin binding properties of dimerized alpha-subunits, we have reintroduced the domains containing alpha-alpha disulfide bonds into this minireceptor. When inserting either the first fibronectin type III domain or the full-length sequence of exon 10, the receptor fragments were predominantly secreted as disulfide-linked dimers that both had nanomolar affinity for insulin, similar to the affinity found for the minireceptor. However, when both these domains were included we obtained a soluble dimeric receptor that bound insulin with 1000-fold higher affinity (4-8 pm) similar to what was obtained for the solubilized holoreceptor (14-24 pm). Moreover, dissociation of labeled insulin from this receptor was accelerated in the presence of unlabeled insulin, demonstrating another characteristic feature of the holoreceptor. This is the first direct demonstration showing that the alpha-subunit of IR contains all the epitopes required for binding insulin with full holoreceptor affinity.  相似文献   

10.
The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight 'twist' rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.  相似文献   

11.
The two insulin receptor (IR) isoforms IR-A and IR-B are responsible for the pleiotropic actions of insulin and insulin-like growth factors. Consequently, changes in IR isoform expression and in the bioavailability of their ligands will impact on IR-mediated functions. Although alteration of IR isoform expression has been linked to insulin resistance, knowledge of IR isoform expression and mechanisms underlying tissue/cell-type-specific changes in metabolic disease are lacking. Using mouse models of obesity/diabetes and measuring the mRNA of the IR isoforms and mRNA/protein levels of total IR, we provide a data set of IR isoform expression pattern that documents changes in a tissue-dependent manner. Combining tissue fractionation and a new in situ mRNA hybridization technology to visualize the IR isoforms at cellular resolution, we explored the mechanism underlying the change in IR isoform expression in perigonadal adipose tissue, which is mainly caused by tissue remodelling, rather than by a shift in IR alternative splicing in a particular cell type, e.g. adipocytes.  相似文献   

12.
We investigated structural requirements for dimerisation and ligand binding of insulin/IGF receptors. Soluble receptor fragments consisting of N-terminal domains (L1/CYS/L2, L1/CYS/L2/F0) or fibronectin domains (F0/F1/F2, F1/F2) were expressed in CHO cells. Fragments containing F0 or F1 domains were secreted as disulphide-linked dimers, and those consisting of L1/CYS/L2 domains as monomers. None of these proteins bound ligand. However, when a peptide of 16 amino acids from the alpha-subunit C-terminus was fused to the C-terminus of L1/CYS/L2, the monomeric insulin and IGF receptor constructs bound their respective ligands with affinity only 10-fold lower than native receptors.  相似文献   

13.
Sequences of the insulin receptor (IR), the type-I insulin-like growth-factor receptor (IGFR) and the insulin-receptor-related receptor show that they belong to a homologous family but, until recently, have given few clues about their structures. Three repeats of fibronectin type III have been identified close to the membrane. Although the N-terminal L1, Cys-rich and L2 domains of the IGFR have been identified from their sequences and their structures determined by X-ray crystallography, little is known of their relative positions in the complete receptor in vivo. Here, we ask what can be learnt further from the analysis of sequences, about the structure, organization and function of the extracellular regions of the IR family.  相似文献   

14.
Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors.  相似文献   

15.
Aptamers are single-stranded oligonucleotides that bind to a specific target with high affinity, and are widely applied in biomedical diagnostics and drug development. However, the use of aptamers has largely been limited to simple binders or inhibitors that interfere with the function of a target protein. Here, we show that an aptamer can also act as a positive allosteric modulator that enhances the activation of a receptor by stabilizing the binding of a ligand to that receptor. We developed an aptamer, named IR-A43, which binds to the insulin receptor, and confirmed that IR-A43 and insulin bind to the insulin receptor with mutual positive cooperativity. IR-A43 alone is inactive, but, in the presence of insulin, it potentiates autophosphorylation and downstream signaling of the insulin receptor. By using the species-specific activity of IR-A43 at the human insulin receptor, we demonstrate that residue Q272 in the cysteine-rich domain is directly involved in the insulin-enhancing activity of IR-A43. Therefore, we propose that the region containing residue Q272 is a hotspot that can be used to enhance insulin receptor activation. Moreover, our study implies that aptamers are promising reagents for the development of allosteric modulators that discriminate a specific conformation of a target receptor.  相似文献   

16.
We have investigated the role of the C-terminal of the alpha-subunit in the insulin receptor family by characterizing chimeric mini-receptor constructs comprising the first three domains (468 amino acids) of insulin receptor (IR) or insulin-like growth factor I receptor (IGFIR) combined with C-terminal domain from either insulin receptor (IR) (residues 704-719), IGFIR, or insulin receptor-related receptor (IRRR). The constructs were stably expressed in baby hamster kidney cells and purified, and binding affinities were determined for insulin, IGFI, and a single chain insulin/IGFI hybrid. The C-terminal domain of IRRR was found to abolish binding in IR and IGFIR context, whereas other constructs bound ligands. The two constructs with first three domains of the IR demonstrated low specificity for ligands, all affinities ranging from 3.0 to 15 nM. In contrast, the constructs with the first three domains of the IGFIR had high specificity, the affinity of the novel minimized IGFIR for IGFI was 1.5 nM, whereas the affinity for insulin was more than 3000 nM. When swapping the C-terminal domains in either receptor context only minor changes were observed in affinities (<3-fold), demonstrating that the carboxyl-terminal of IR and IGFIR alpha-subunits are interchangeable and suggesting that this domain is part of the common binding site.  相似文献   

17.

Background

Insulin-like growth factor-II (IGF-II) promotes cell proliferation and survival and plays an important role in normal fetal development and placental function. IGF-II binds both the insulin-like growth factor receptor (IGF-1R) and insulin receptor isoform A (IR-A) with high affinity. Interestingly both IGF-II and the IR-A are often upregulated in cancer and IGF-II acts via both receptors to promote cancer proliferation. There is relatively little known about the mechanism of ligand induced activation of the insulin (IR) and IGF-1R. The recently solved IR structure reveals a folded over dimer with two potential ligand binding pockets arising from residues on each receptor half. Site-directed mutagenesis has mapped receptor residues important for ligand binding to two separate sites within the ligand binding pocket and we have recently shown that the IGFs have two separate binding surfaces which interact with the receptor sites 1 and 2.

Methodology/Principal Findings

In this study we describe a series of partial IGF-1R and IR agonists generated by mutating Glu12 of IGF-II. By comparing receptor binding affinities, abilities to induce negative cooperativity and potencies in receptor activation, we provide evidence that residue Glu12 bridges the two receptor halves leading to receptor activation.

Conclusions/Significance

This study provides novel insight into the mechanism of receptor binding and activation by IGF-II, which may be important for the future development of inhibitors of its action for the treatment of cancer.  相似文献   

18.

Purpose

Insulin-like growth factor (IGF) signaling through human insulin receptor isoform A (IR-A) contributes to tumorigenesis and intrinsic resistance to anti-IGF1R therapy. In the present study, we (a) developed quantitative TaqMan real time-PCR-based assays (qRT-PCR) to measure human insulin receptor isoforms with high specificity, (b) evaluated isoform expression levels in molecularly-defined breast cancer subtypes, and (c) identified the IR-A:IR-B mRNA ratio as a potential biomarker guiding patient stratification for anti-IGF therapies.

Experimental Design

mRNA expression levels of IR-A and IR-B were measured in 42 primary breast cancers and 19 matched adjacent normal tissues with TaqMan qRT-PCR assays. The results were further confirmed in 165 breast cancers. The tumor samples were profiled using whole genome microarrays and subsequently subtyped using the PAM50 breast cancer gene signature. The relationship between the IR-A:IR-B ratio and cancer subtype, as well as markers of proliferation were characterized.

Results

The mRNA expression levels of IR-A in the breast tumors were similar to those observed in the adjacent normal tissues, while the mRNA levels of IR-B were significantly decreased in tumors. The IR-A:IR-B ratio was significantly higher in luminal B breast cancer than in luminal A. Strong concordance between the IR-A:IR-B ratio and the composite Oncotype DX proliferation score was observed for stratifying the latter two breast cancer subtypes.

Conclusions

The reduction in IR-B expression is the key to the altered IR-A:IR-B ratio observed in breast cancer. The IR-A:IR-B ratio may have biomarker utility in guiding a patient stratification strategy for an anti-IGF therapeutic.  相似文献   

19.
The insulin receptor plays a vital role in mediating the actions of insulin. These include metabolic and mitogenic effects. This review will focus on the role of the insulin receptor isoforms in normal development and the pathogenesis of certain cancers and type 2 diabetes. There are two insulin receptor isoforms arising from the alternative splicing of exon 11 resulting in either the exon 11+ (IR-B) isoform (including 12 amino acids encoded by exon 11) or the exon 11- (IR-A) isoform. The isoforms have different affinities for insulin, IGF-II and IGF-I with the exon 11- isoform binding both insulin and IGF-II with high affinities. Interestingly, differential expression of the insulin receptor isoforms has been demonstrated in disease. Several cancer cell types that also overexpress IGF-II preferentially express the exon 11- isoform. Activation of the exon 11- insulin receptor by IGF-II and insulin results in mitogenic effects and a potentiation of the cancer phenotype. Also hyperinsulinemia has been associated with increased risk of cancer. Differential expression of the insulin receptor isoforms has also been demonstrated in type 2 diabetes although there is some discrepancy in the literature as to which isoform is expressed.  相似文献   

20.
The reciprocal influence and bidirectional cross-talk between bone and energy metabolism is a recent finding, since the discovery that the product of osteoblasts osteocalcin increases pancreatic β-cell proliferation, insulin secretion and sensitivity. Conversely, the anabolic effect of insulin is crucial for osteoblast function, as suggested by severe osteopenia and increased incidence of fracture in insulin-deficient diabetic patients. The Insulin Receptor (IR) tyrosine kinase, which is commonly expressed in the insulin-sensitive liver, muscle, and adipose tissues, is also found in animal and human bone. Here we show that in human bone two insulin receptor isoforms (IR-A and IR-B) are differently expressed. Mature human osteoblasts predominantly express IR-B, whereas IR-A is mainly expressed in osteoblast precursors, and IR-B/IR-A mRNA ratio significantly increases along the osteogenic differentiation of mesenchymal stromal precursors. Moreover, transfected osteoprogenitors overexpressing IR-A show an increased proliferation rate. In contrast, when transfected with and overexpressing IR-B, their proliferation rate is reduced, corresponding to a more differentiated phenotype. In conclusion, the fine regulation of the expression of different isoforms of IR during osteogenic differentiation confirms the important role played by IR in bone homeostasis, providing the basis for new perspectives on the various involvements of IR isoforms in bone pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号