首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endocannabinoid anandamide is able to interact with the transient receptor potential vanilloid 1 (TRPV1) channels at a molecular level. As yet, endogenously produced anandamide has not been shown to activate TRPV1, but this is of importance to understand the physiological function of this interaction. Here, we show that intracellular Ca2+ mobilization via the purinergic receptor agonist ATP, the muscarinic receptor agonist carbachol or the Ca(2+)-ATPase inhibitor thapsigargin leads to formation of anandamide, and subsequent TRPV1-dependent Ca2+ influx in transfected cells and sensory neurons of rat dorsal root ganglia (DRG). Anandamide metabolism and efflux from the cell tonically limit TRPV1-mediated Ca2+ entry. In DRG neurons, this mechanism was found to lead to TRPV1-mediated currents that were enhanced by selective blockade of anandamide cellular efflux. Thus, endogenous anandamide is formed on stimulation of metabotropic receptors coupled to the phospholipase C/inositol 1,4,5-triphosphate pathway and then signals to TRPV1 channels. This novel intracellular function of anandamide may precede its action at cannabinoid receptors, and might be relevant to its control over neurotransmitter release.  相似文献   

2.
Transient receptor potential vanilloid 1 (TRPV1), or vanilloid receptor 1, is the founding member of the vanilloid type of TRP superfamily of nonselective cation channels. TRPV1 is activated by noxious heat, acid, and alkaloid irritants as well as several endogenous ligands and is sensitized by inflammatory factors, thereby serving important functions in detecting noxious stimuli in the sensory system and pathological states in different parts of the body. Whereas numerous studies have been carried out using the rat and human TRPV1 cDNA, the mouse TRPV1 cDNA has not been characterized. Here, we report molecular cloning of two TRPV1 cDNA variants from dorsal root ganglia of C57BL/6 mice. The deduced proteins are designated TRPV1alpha and TRPV1beta and contain 839 and 829 amino acids, respectively. TRPV1beta arises from an alternative intron recognition signal within exon 7 of the trpv1 gene. We found a predominant expression of TRPV1alpha in many tissues and significant expression of TRPV1beta in dorsal root ganglia, skin, stomach, and tongue. When expressed in HEK 293 cells or Xenopus oocytes, TRPV1alpha formed a Ca(2+)-permeable channel activated by ligands known to stimulate TRPV1. TRPV1beta was not functional by itself but its co-expression inhibited the function of TRPV1alpha. Furthermore, although both isoforms were synthesized at a similar rate, less TRPV1beta than TRPV1alpha protein was found in cells and on the cell surface, indicating that the beta isoform is highly unstable. Our data suggest that TRPV1beta is a naturally occurring dominant-negative regulator of the responses of sensory neurons to noxious stimuli.  相似文献   

3.
Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel expressed predominantly in peripheral nociceptors. By detecting and integrating diverse noxious thermal and chemical stimuli, and as a result of its sensitization by inflammatory mediators, the TRPV1 receptor plays a key role in inflammation-induced pain. Activation of TRPV1 leads to a cascade of pro-nociceptive mechanisms, many of which still remain to be identified. Here, we report a novel effect of TRPV1 on the activity of the potassium channel KCNQ2/3, a negative regulator of neuronal excitability. Using ion influx assays, we revealed that TRPV1 activation can abolish KCNQ2/3 activity, but not vice versa, in human embryonic kidney (HEK)293 cells. Electrophysiological studies showed that coexpression of TRPV1 caused a 7.5-mV depolarizing shift in the voltage dependence of KCNQ2/3 activation compared with control expressing KCNQ2/3 alone. Furthermore, activation of TRPV1 by capsaicin led to a 54% reduction of KCNQ2/3-mediated current amplitude and attenuation of KCNQ2/3 activation. The inhibitory effect of TRPV1 appears to depend on Ca(2+) influx through the activated channel followed by Ca(2+)-sensitive depletion of phosphatidylinositol 4,5-bisphosphate and activation of protein phosphatase calcineurin. We also identified physical interactions between TRPV1 and KCNQ2/3 coexpressed in HEK293 cells and in rat dorsal root ganglia neurons. Mutation studies established that this interaction is mediated predominantly by the membrane-spanning regions of the respective proteins and correlates with the shift of KCNQ2/3 activation. Collectively, these data reveal that TRPV1 activation may deprive neurons from inhibitory control mediated by KCNQ2/3. Such neurons may thus have a lower threshold for activation, which may indirectly facilitate TRPV1 in integrating multiple noxious signals and/or in the establishment or maintenance of chronic pain.  相似文献   

4.
Odontoblasts are involved in the transduction of stimuli applied to exposed dentin. Although expression of thermo/mechano/osmo-sensitive transient receptor potential (TRP) channels has been demonstrated, the properties of TRP vanilloid 1 (TRPV1)-mediated signaling remain to be clarified. We investigated physiological and pharmacological properties of TRPV1 and its functional coupling with cannabinoid (CB) receptors and Na(+)-Ca(2+) exchangers (NCXs) in odontoblasts. Anandamide (AEA), capsaicin (CAP), resiniferatoxin (RF) or low-pH evoked Ca(2+) influx. This influx was inhibited by capsazepine (CPZ). Delay in time-to-activation of TRPV1 channels was observed between application of AEA or CAP and increase in [Ca(2+)](i). In the absence of extracellular Ca(2+), however, an immediate increase in [Ca(2+)](i) was observed on administration of extracellular Ca(2+), followed by activation of TRPV1 channels. Intracellular application of CAP elicited inward current via opening of TRPV1 channels faster than extracellular application. With extracellular RF application, no time delay was observed in either increase in [Ca(2+)](i) or inward current, indicating that agonist binding sites are located on both extra- and intracellular domains. KB-R7943, an NCX inhibitor, yielded an increase in the decay time constant during TRPV1-mediated Ca(2+) entry. Increase in [Ca(2+)](i) by CB receptor agonist, 2-arachidonylglycerol, was inhibited by CB1 receptor antagonist or CPZ, as well as by adenylyl cyclase inhibitor. These results showed that TRPV1-mediated Ca(2+) entry functionally couples with CB1 receptor activation via cAMP signaling. Increased [Ca(2+)](i) by TRPV1 activation was extruded by NCXs. Taken together, this suggests that cAMP-mediated CB1-TRPV1 crosstalk and TRPV1-NCX coupling play an important role in driving cellular functions following transduction of external stimuli to odontoblasts.  相似文献   

5.
Ca(2+) homeostasis plays a critical role in a variety of cellular processes. We showed previously that stimulation of the prostate-specific G protein-coupled receptor (PSGR) enhances cytosolic Ca(2+) and inhibits proliferation of prostate cells. Here, we analyzed the signaling mechanisms underlying the PSGR-mediated Ca(2+) increase. Using complementary molecular, biochemical, electrophysiological, and live-cell imaging techniques, we found that endogenous Ca(2+)-selective transient receptor potential vanilloid type 6 (TRPV6) channels are critically involved in the PSGR-induced Ca(2+) signal. Biophysical characterization of the current activated by PSGR stimulation revealed characteristic properties of TRPV6. The molecular identity of the involved channel was confirmed using RNA interference targeting TrpV6. TRPV6-mediated Ca(2+) influx depended on Src kinase activity. Src kinase activation occurred independently of G protein activation, presumably by direct interaction with PSGR. Taken together, we report that endogenous TRPV6 channels are activated downstream of a G protein-coupled receptor and present the first physiological characterization of these channels in situ.  相似文献   

6.
TRPV1 expression-dependent initiation and regulation of filopodia   总被引:2,自引:0,他引:2  
Transient receptor potential vanilloid subtype 1 (TRPV1), a non-selective cation channel, is present endogenously in dorsal root ganglia (DRG) neurons. It is involved in the recognition of various pain producing physical and chemical stimuli. In this work, we demonstrate that expression of TRPV1 induces neurite-like structures and filopodia and that the expressed protein is localized at the filopodial tips. Exogenous expression of TRPV1 induces filopodia both in DRG neuron-derived F11 cells and in non-neuronal cells, such as HeLa and human embryonic kidney (HEK) cells. We find that some of the TRPV1 expression-induced filopodia contain microtubules and microtubule-associated components, and establish cell-to-cell extensions. Using live cell microscopy, we demonstrate that the filopodia are responsive to TRPV1-specific ligands. But both, initiation and subsequent cell-to-cell extension formation, is independent of TRPV1 channel activity. The N-terminal intracellular domain of TRPV1 is sufficient for filopodial structure initiation while the C-terminal cytoplasmic domain is involved in the stabilization of microtubules within these structures. In addition, exogenous expression of TRPV1 results in altered cellular distribution and in enhanced endogenous expression of non-conventional myosin motors, namely myosin IIA and myosin IIIA. These data indicate a novel role of TRPV1 in the regulation of cellular morphology and cellular contact formation.  相似文献   

7.
Calcium influx through voltage-activated Ca(2+) channels (VACCs) plays a critical role in neurotransmission. Capsaicin application inhibits VACCs and desensitizes nociceptors. In this study, we determined the signaling mechanisms of the inhibitory effect of capsaicin on VACCs in primary sensory neurons. Whole-cell voltage clamp recordings were performed in acutely isolated rat dorsal root ganglion neurons. Capsaicin caused a profound decrease in the Ca(2+) current (I(Ca)) density in capsaicin-sensitive, but not -insensitive, dorsal root ganglion neurons. At 1 mum, capsaicin suppressed about 60% of N-, P/Q-, L-, and R-type I(Ca) density. Pretreatment with iodoresiniferatoxin, a specific transient receptor potential vanilloid type 1 (TRPV1) antagonist, or intracellular application of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocked the inhibitory effect of capsaicin on I(ca). However, neither W-7, a calmodulin blocker, nor KN-93, a CaMKII inhibitor, attenuated the inhibitory effect of capsaicin on I(Ca). Furthermore, intracellular dialysis of deltamethrin or cyclosporin A, the specific calcineurin (protein phosphatase 2B) inhibitors, but not okadaic acid (a selective protein phosphatase 1/protein phosphatase 2A inhibitor), abolished the effect of capsaicin on I(Ca). Interestingly, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, deltamethrin, cyclosporin A, and okadaic acid each alone significantly increased the I(Ca) density and caused a depolarizing shift in the voltage dependence of activation. Immunofluorescence labeling revealed that capsaicin induced a rapid internalization of Ca(V)2.2 channels on the membrane. Thus, this study provides novel information that VACCs are tonically modulated by the intracellular Ca(2+) level and endogenous phosphatases in sensory neurons. Stimulation of TRPV1 by capsaicin down-regulates VACCs by dephosphorylation through Ca(2+)-dependent activation of calcineurin.  相似文献   

8.
9.
10.
Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner.  相似文献   

11.
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a protein currently under scrutiny as a pharmacological target for pain management therapies. Recently, the role of TRPV1-microtubule interaction in transducing nociception stimuli to cells by cytoskeletal rearrangement was proposed. In this work, we investigate TRPV1-microtubule interaction in living cells under the resting or activated state of TRPV1, as well as in presence of structurally intact or depolymerized cytoskeletal microtubules. We combined a toolbox of high resolution/high sensitivity fluorescence imaging techniques (such as FRET, correlation spectroscopy, and fluorescence anisotropy) to monitor TRPV1 aggregation status, membrane mobility, and interaction with microtubules. We found that TRPV1 is a dimeric membrane protein characterized by two populations with different diffusion properties in basal condition. After stimulation with resiniferatoxin, TRPV1 dimers tetramerize. The tetramers and the slower population of TRPV1 dimers bind dynamically to intact microtubules but not to tubulin dimers. Upon microtubule disassembly, the interaction with TRPV1 is lost thereby inducing receptor self-aggregation with partial loss of functionality. Intact microtubules play an essential role in maintaining TRPV1 functionality toward activation stimuli. This previously undisclosed property mirrors the recently reported role of TRPV1 in modulating microtubule assembly/disassembly and suggests the participation of these two players in a feedback cycle linking nociception and cytoskeletal remodeling.  相似文献   

12.
The receptor activator of NFκB ligand (RANKL) induces Ca(2+) oscillations and activates the Nuclear Factor of Activated T cells 1 (NFATc1) during osteoclast differentiation (osteoclastogenesis). Ca(2+) oscillations are an important trigger signal for osteoclastogenesis, however the molecular basis of Ca(2+) permeable influx pathways serving Ca(2+) oscillations has not yet been identified. Using a DNA microarray, we found that Transient Receptor Potential Vanilloid channels 2 (TRPV2) are expressed significantly in RANKL-treated RAW264.7 cells (preosteoclasts) compared to untreated cells. Therefore, we further investigated the expression and functional role of TRPV2 on Ca(2+) oscillations and osteoclastogenesis. We found that RANKL dominantly up-regulates TRPV2 expression in preosteoclasts, and evokes spontaneous Ca(2+) oscillations and a transient inward cation current in a time-dependent manner. TRPV inhibitor ruthenium red and tetracycline-induced TRPV2 silencing significantly decreased both the frequency of Ca(2+) oscillations and the transient inward currents in RANKL-treated preosteoclasts. Silencing of store-operated Ca(2+) entry (SOCE) proteins similarly suppressed both RANKL-induced oscillations and currents in preosteoclasts. Furthermore, suppression of TRPV2 also reduced RANKL-induced NAFTc1 expression, its nuclear translocation, and osteoclastogenesis. In summary, Ca(2+) oscillations in preosteoclasts are triggered by RANKL-dependent TRPV2 and SOCE activation and intracellular Ca(2+) release. Subsequent activation of NFATc1 promotes osteoclastogenesis.  相似文献   

13.
Transient receptor potential (TRP) channels of the TRPV, TRPA, and TRPM subfamilies play important roles in somatosensation including nociception. While particularly the Thermo TRPs have been extensively investigated in sensory neurons, the relevance of the subclass of "canonical" TRPC channels in primary afferents is yet elusive. In the present study, we investigated the presence and contribution to Ca(2+) transients of TRPC channels in dorsal root ganglion neurons. We found that six of the seven known TRPC subtypes were expressed in lumbar DRG, with TRPC1, C3, and C6 being the most abundant. Microfluorimetric calcium measurements showed Ca(2+) influx induced by oleylacylglycerol (OAG), an activator of the TRPC3/C6/C7 subgroup. Furthermore, OAG induced rises in [Ca(2+)](i) were inhibited by SKF96365, an inhibitor of receptor and store operated calcium channel. OAG induced calcium transients were also inhibited by blockers of diacylglycerol (DAG) lipase, lipoxygenase or cyclooxygenase and, intriguingly, by inhibitors of the capsaicin receptor TRPV1. Notably, SKF96365 did not affect capsaicin-induced calcium transients. Taken together, our findings suggest that TRPC are functionally expressed in subpopulations of DRG neurons. These channels, along with TRPV1, contribute to calcium homeostasis in rat sensory neurons.  相似文献   

14.
Nociceptive neurons in the peripheral nervous system detect noxious stimuli and report the information to the central nervous system. Most nociceptive neurons express the vanilloid receptor, TRPV1, a nonselective cation channel gated by vanilloid ligands such as capsaicin, the pungent essence of chili peppers. Here, we report the synthesis and biological application of two caged vanilloids: biologically inert precursors that, when photolyzed, release bioactive vanilloid ligands. The two caged vanilloids, Nb-VNA and Nv-VNA, are photoreleased with quantum efficiency of 0.13 and 0.041, respectively. Under flash photolysis conditions, photorelease of Nb-VNA and Nv-VNA is 95% complete in approximately 40 micros and approximately 125 micros, respectively. Through 1-photon excitation with ultraviolet light (360 nm), or 2-photon excitation with red light (720 nm), the caged vanilloids can be photoreleased in situ to activate TRPV1 receptors on nociceptive neurons. The consequent increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) can be visualized by laser-scanning confocal imaging of neurons loaded with the fluorescent Ca(2+) indicator, fluo-3. Stimulation results from TRPV1 receptor activation, because the response is blocked by capsazepine, a selective TRPV1 antagonist. In Ca(2+)-free extracellular medium, photoreleased vanilloid can still elevate [Ca(2+)](i), which suggests that TRPV1 receptors also reside on endomembranes in neurons and can mediate Ca(2+) release from intracellular stores. Notably, whole-cell voltage clamp measurements showed that flash photorelease of vanilloid can activate TRPV1 channels in <4 ms at 22 degrees C. In combination with 1- or 2-photon excitation, caged vanilloids are a powerful tool for probing morphologically distinct structures of nociceptive sensory neurons with high spatial and temporal precision.  相似文献   

15.
N-Arachidonoyl dopamine (NADA) is an endogenous lipid that modulates signal transduction in neuronal and immune pathways. NADA activates the non-selective cation channel, transient receptor potential vanilloid type 1 (TRPV(1)) and cannabinoid receptor 1. That NADA is comprised of an arachidonic acid (AA) backbone suggests that it may be metabolized through many of the enzymes that act upon AA such as the other AA-derived signaling lipids, the endogenous cannabinoids. To investigate the metabolism of NADA through the cytochrome P450 (CYP450) metabolic pathway, we studied the in vitro rat liver microsomal production of hydroxylated metabolites and their activity at recombinant human TRPV(1) receptors. We showed that following microsomal activation in the presence of NADA, omega and (omega-1) hydroxylated metabolites (19- and 20-HETE-DA) were formed. These metabolites were active at recombinant human TRPV(1) receptors, inducing a dose-dependent calcium influx. Both metabolites exhibited lower potency compared to NADA. We conclude that CYP450 enzymes are capable of metabolizing this signaling lipid forming a larger family of potential neuromodulators.  相似文献   

16.
Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca2+ ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4−/− mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca2+]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia.  相似文献   

17.
The low extracellular pH of inflamed or ischemic tissues enhances painful sensations by sensitizing and activating the vanilloid receptor 1 (TRPV1). We report here that activation of TRPV1 results in a marked intracellular acidification in nociceptive dorsal root ganglion neurons and in a heterologous expression system. A characterization of the underlying mechanisms revealed a Ca(2+)-dependent intracellular acidification operating at neutral pH and an additional as yet unrecognized direct proton conductance through the poorly selective TRPV1 pore operating in acidic extracellular media. Large organic cations permeate through the activated TRPV1 pore even in the presence of physiological concentrations of Na(+), Mg(2+), and Ca(2+). The wide pore and the unexpectedly high proton permeability of TRPV1 point to a proton hopping permeation mechanism along the water-filled channel pore. In acidic media, the high relative proton permeability through TRPV1 defines a novel proton entry mechanism in nociceptive neurons.  相似文献   

18.
The physiological role and activation mechanism for most proteins of the transient receptor potential (TRP) family are unknown. This is also the case for the highly Ca(2+) selective transient receptor potential vanilloid type 6 (TRPV6) channel. Patch clamp experiments were performed on transiently transfected human embryonic kidney (HEK) cells to address this issue. Currents were recorded under various conditions of intracellular Ca(2+) buffering and monitored at the same voltage throughout. No TRPV6-mediated Ca(2+) entry was detected under in vivo Ca(2+) buffering conditions at a slightly negative holding potential; however, moderate depolarization resulted in current activation. Very similar results were obtained with different Ca(2+) chelators, either EGTA or BAPTA dialyzing the cell. TRPV6 channel activity showed a negative correlation with the intracellular free Ca(2+) concentration ([Ca(2+)](i)) and was modulated by the membrane potential: Hyperpolarization decreases and depolarization increases TRPV6-mediated currents. Monovalent ions permeated TRPV6 channels in the absence of extracellular divalent cations. These currents were resistant to changes in the holding potential while the negative correlation to the [Ca(2+)](i) was conserved, indicating that the voltage-dependent current changes depend on blocking and unblocking the charge carrier Ca(2+) within the pore. In summary, these results suggest that the voltage dependence of TRPV6-mediated Ca(2+) influx is of physiological importance since it occurs at cytosolic Ca(2+) buffering and takes place within a physiologically relevant membrane potential range.  相似文献   

19.
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4β by μ-opioid receptors. ML204 inhibited TRPC4β-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 μm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4β currents activated through either μ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 μm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.  相似文献   

20.
Jin M  Berrout J  Chen L  O'Neil RG 《Cell calcium》2012,51(2):131-139
The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca(2+)-activated K(+) channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca(2+)-activated K(+) channels, the small conductance SK3 (K(Ca)2.3) channel and large conductance BKα channel (K(Ca)1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K(+) channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca(2+) influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca(2+) influx on activation of both K(+) channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca(2+) influx would first activate the highly Ca(2+)-sensitive SK3 channel which, in turn, would lead to enhanced Ca(2+) influx and activation of the less Ca(2+)-sensitive BK channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号