首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Organic pollutants exhibiting endocrine disrupting activity (Endocrine Disruptors--EDs) are prevalent over a wide range in the aquatic ecosystems; most EDs are resistant to environmental degradation and are considered ubiquitous contaminants. The actual potency of EDs is low compared to that of natural hormones, but environmental concentrations may still be sufficiently high to produce detrimental biological effects. Most information on the biological effects and mechanisms of action of EDs has been focused on vertebrates. Here we summarize recent progress in studies on selected aspects of endocrine disruption in marine organisms that are still poorly understood and that certainly deserve further research in the near future. This review, divided in four sections, focuses mainly on invertebrates (effects of EDs and mechanisms of action) and presents data on top predators (large pelagic fish and cetaceans), a group of vertebrates that are particularly at risk due to their position in the food chain. The first section deals with basic pathways of steroid biosynthesis and metabolism as a target for endocrine disruption in invertebrates. In the second section, data on the effects and alternative mechanisms of action of estrogenic compounds in mussel immunocytes are presented, addressing to the importance of investigating full range responses to estrogenic chemicals in ecologically relevant invertebrate species. In the third section we review the potential use of vitellogenin (Vtg)-like proteins as a biomarker of endocrine disruption in marine bivalve molluscs, used worldwide as sentinels in marine biomonitoring programmes. Finally, we summarize the results of a recent survey on ED accumulation and effects on marine fish and mammals, utilizing both classical biomarkers of endocrine disruption in vertebrates and non-lethal techniques, such as non-destructive biomarkers, indicating the toxicological risk for top predator species in the Mediterranean. Overall, the reviewed data underline the potential to identify specific types of responses to specific groups of chemicals such as EDs in order to develop suitable biomarkers that could be useful as diagnostic tools for endocrine disruption in marine invertebrates and vertebrates.  相似文献   

2.
Xenoestrogen endocrine disrupters (EDs) in the environment are thought to be responsible for a number of examples of sexual dysfunction that have recently been reported in several species. There is growing concern that these compounds may also cause abnormalities of the male reproductive tract and reduced spermatogenesis in man. Whilst some effects of EDs may be receptor-mediated, there is growing evidence that these compounds can exert potent effects in vivo by directly interacting with cellular enzyme targets. Here we report on, and review, the effects of alkylphenols and other EDs on two such enzymes: (1) sulfotransferases, which convert active estrogenic steroids to inactive steroid sulfates; and (2) Ca(2+)-ATPases, which are responsible for maintaining low, physiological, intracellular Ca(2+) concentrations. These enzymes are potently inhibited by EDs in both fish and mammalian species. The increased concentrations of active estrogens and the likely cytotoxic effects of elevated concentrations of intracellular Ca(2+) arising from these effects may underlie some of the endocrine disrupting potential of these widespread industrial pollutants.  相似文献   

3.
Components used in plastics, such as phthalates, bisphenol A (BPA), polybrominated diphenyl ethers (PBDE) and tetrabromobisphenol A (TBBPA), are detected in humans. In addition to their utility in plastics, an inadvertent characteristic of these chemicals is the ability to alter the endocrine system. Phthalates function as anti-androgens while the main action attributed to BPA is oestrogen-like activity. PBDE and TBBPA have been shown to disrupt thyroid hormone homeostasis while PBDEs also exhibit anti-androgen action. Experimental investigations in animals indicate a wide variety of effects associated with exposure to these compounds, causing concern regarding potential risk to human health. For example, the spectrum of effects following perinatal exposure of male rats to phthalates has remarkable similarities to the testicular dysgenesis syndrome in humans. Concentrations of BPA in the foetal mouse within the range of unconjugated BPA levels observed in human foetal blood have produced effects in animal experiments. Finally, thyroid hormones are essential for normal neurological development and reproductive function. Human body burdens of these chemicals are detected with high prevalence, and concentrations in young children, a group particularly sensitive to exogenous insults, are typically higher, indicating the need to decrease exposure to these compounds.  相似文献   

4.
Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products--including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption.  相似文献   

5.
Most primates depend heavily on plant foods; thus their chemical composition is key to understanding primate ecology and evolution. One class of plant compounds of strong current interest are phytoestrogens, which have the potential to alter fertility, fecundity, and survival. These plant compounds mimic the activity of vertebrate estrogens, resulting in altered physiology and behavior. Here, we review what is known about phytoestrogens from an ecological and evolutionary perspective. Much of what is known about the effects of phytoestrogens on the endocrine system comes from research on human foods, especially soybeans (Glycine max). Two opposing perspectives have resulted from this research: 1) phytoestrogens provide health benefits, such as cancer prevention, or 2) phytoestrogens act as endocrine disruptors and threaten reproductive health. Studies of wild primates have only recently begun examining the presence of estrogenic plants in the primate diet and the effects of their consumption. Evidence that a number of primate species eat plants containing phytoestrogens and research documenting behavioral and hormonal effects of estrogenic plant consumption for red colobus monkeys (Procolobus rufomitratus) augment captive and laboratory studies to suggest that these compounds promote differential survival and reproduction. Although much debate is currently taking place over the role of phytoestrogens and other endocrine disruptors in human health issues and in threatening biodiversity, we argue that an ecological and evolutionary approach is needed to reach appropriate conclusions.  相似文献   

6.
Many water systems worldwide are affected by pollutants, including potential endocrine disruptors (EDs). Most studies on the effects of EDs on fish reproduction have focused on oviparous species. However, some important groups of fishes are not oviparous and there is scarce information about how EDs affect species with alternative reproductive modes. Goodeinae is a viviparous matrotrophic subfamily with intraluminal gestation (IG), where transfer of nutrients occurs and embryos develop inside the ovarian cavity. Goodeinae is endemic to the Mexican Central Plateau, an area affected by potential EDs, including 2,4-dichlorophenoxyacetic acid (2,4-D). This review synthesizes the available information about EDs in viviparous teleosts with IG and performs a case study on the effects of 2,4-D on gonadal structure of two Goodeinae species. We hypothesized that individuals exposed to 2,4-D might show altered gonadal structure. The available information included effects on gene expression, sexual differentiation, gametogenesis, secondary sexual characteristics, and sexual behavior. Knowledge gaps persisted on the effects of EDs on viviparous teleosts with IG. Holistic approaches are needed to understand the mechanisms underlying endocrine disruption effects. Field studies are needed to evaluate the consequences of EDs on wild populations. The case study revealed histological alterations in oocytes, spermatogonia, and sperm cysts in fishes exposed to 2,4-D. Ultrastructurally, gonads exhibited alterations in oocyte mitochondrial and nuclear membranes, and in spermatid mitochondria. The observed changes could be related to 2,4-D exposure, which may affect species reproduction in their natural environment. Matrotrophic viviparous teleosts with IG may serve as models to explore endocrine disruption.  相似文献   

7.
With the growing concern that environmental chemicals might impair human and animal fertility, it is important to investigate the possible influence of these substances on sexual differentiation and genital development of mammals. Many of these substances are suspected to interfere with endocrine processes, and exposure during critical periods of prenatal development might affect reproductive performance over several generations. Alkylphenols and their metabolites are lipophilic substances exerting apparent estrogenic action in in vitro and in vivo testing systems. With the widespread industrial use of alkylphenols, these are disseminated in the environment with sewage sludge, and domestic animals and humans are likely to be exposed via the food chain. Using the pig as an in vivo model, we studied the effect of intrauterine exposure to tertiary octylphenol (OP) on essential reproductive parameters over 3 generations. Sows were treated daily from D 23 to 85 of pregnancy with either 0, 10 or 1000 micrograms OP/kg body weight. Treatment with OP extended pregnancy length and induced basal cell proliferation in the cervical epithelium of the parental generation. In F1 offspring of sows treated with the low dosage of OP, onset of puberty was accelerated. Furthermore, when F1 gilts and F1 boars originating from sows treated with high dosages of OP were bred, the litter size was reduced. The results of the present study are compared with previous reports on estrogenicity of OP, and the usefulness of in vivo animal or embryo models for the evaluation of possible consequences of human exposure to endocrine disrupting compounds is discussed. Furthermore, possible consequences of exposure to endocrine disrupting compounds for the embryo transfer industry are addressed.  相似文献   

8.
A treatise on hazards of endocrine disruptors and tool to evaluate them   总被引:1,自引:0,他引:1  
Hormones mediate a major part of our essential physiological functions. Both endogenous and exogenous compounds and their metabolites are known to act through hormone receptors leading to regulation of endocrine function. The endogenous ligands that control reproductive functions are generally steroids such as 17beta-estradiol, androgens, progesterone, pregnenolone and glucocorticoids. However, exogenous compounds that are structurally and functionally similar gain entry into animals including humans through the diet or by occupational exposures, causing endocrine disruption. In the recent decade, there is a lot of apprehension about the so-called "endocrine disruptors" which are wide spread in the environment, mainly due to unrestricted human activity. These compounds of anthropogenic or natural origin mimic the action of sex hormones and can interfere with the endocrine system. It has been hypothesized that environmental exposure to synthetic estrogenic chemicals and related endocrine active compounds may be responsible for malformations in the male reproductive tract, crytorchidism, hypospadias, decrease in sperm counts, decreased male reproductive capacity and even testicular cancers. The increasing concern in both public and scientific communities about these abnormalities have prompted the initiation of epidemiological studies to not only identify, but to also analyze the short and long term effects of endocrine disruptors. As a result, a number of assays have been developed and are undergoing validation aimed at high throughput screening of chemical agents that disrupt endocrine activity. This review consolidates the findings of epidemiological studies, particularly in relation to male reproductive disorders and brings to light the various types of in vitro and in vivo models that are available for tiered testing of suspected compounds.  相似文献   

9.
环境内分泌干扰物(environmental endocrine disruptors,EEDs)是指环境中天然存在或污染的能够干扰机体内自然激素的合成、分泌、转运、结合、作用和消除等过程,表现出拟自然激素或抗自然激素的生理学作用的一类化合物。它们与人们的生活密不可分,比如邻苯二甲酸酯类(PAEs)和双酚A(BPA),就广泛存在于食品包装、儿童玩具及生活用品中。大量实验证据以及流行病学的调查表明环境内分泌干扰物对动物雌激素、睾酮、甲状腺素、儿茶酚胺等呈现显著的干扰效应,是生殖障碍、出生缺陷、发育异常、代谢紊乱以及某些恶性肿瘤的发病率增加的原因之一。本文归纳了环境内分泌干扰物(EEDs)对生殖健康影响的研究进展。  相似文献   

10.
Bisphenol A [2,2-bis(4-hydroxyphenyl)propane] (BPA), 4-nonylphenol (NP) and di(2-ethylhexyl)phthalate (DEHP), and its metabolite mono-2-ethylhexyl phthalate (MEHP) are chemicals found in plastics, which act as endocrine disruptors (EDs) in animals, including human. EDs act like hormones in the endocrine system, and disrupt the physiologic function of endogenous hormones. Most people are exposed to different endocrine disruptors and concern has been raised about their true effect on reproductive organs. In the testis, they seem to preferentially attack developing testis during puberty rather than adult organs. However, the lack of information about the molecular mechanism, and the apparently controversial effect observed in different models has hampered the understanding of their effects on mammalian spermatogenesis. In this review, we critically discuss the available information regarding the effect of BPA, NP and DEHP/ MEHP upon mammalian spermatogenesis, a major target of EDs. Germ cell sloughing, disruption of the blood-testis-barrier and germ cell apoptosis are the most common effects reported in the available literature. We propose a model at the molecular level to explain the effects at the cellular level, mainly focused on germ cell apoptosis.  相似文献   

11.
Current evidence indicates that endocrine disrupters (EDs) can induce adverse effects on the male reproductive tract in various mammalian species. Recent reports indicate deterioration in male reproductive health in several human populations, but the evidence for a causal link with endocrine disruption is still weak. In addition, the experimental conditions of most of the reportedin vivo studies are not representative of environmental exposures (for example, high doses, short-term exposure, a single ED) and the mechanisms by which EDs disrupt the reproductive system are poorly understood. The objective of the present study is to develop an animal model to assess the reproductive effects and study the putative cellular and molecular mechanisms involved after exposure to genistein (phytoestrogen) and vinclozolin (fungicide with a known antiandrogenic potential) alone or in combination. The study will be performed in male Wistar rats, with administration of low and high doses of the compounds from conception to adulthood and a subset of the males in each treatment group will be mated with unexposed females. We plan to assess the level of sperm production, histology of the reproductive organs, motility and morphometry of spermatozoa and hormone levels, as well as DNA fragmentation of spermatozoa and determination of the number of germ cells, Sertoli cells and the diameters of seminiferous tubules. Estrogen, androgen, progesterone and FSH receptors will be detected and quantified and the level of testicular apoptosis and several apoptosis pathways will be studied to determine the putative cellular and molecular mechanisms involved. The preliminary results confirmed the developmental effects previously reported for high doses of vinclozolin. More interestingly, they indicated a number of deleterious effects for male rats exposed to low dosages alone or mixtures of low and high dosages compared to controls and rats exposed to high dosages alone. For example, a number of developmental anomalies of the genitalia were observed and a significant decrease of sperm motility and motion and fertilizing ability were observed. These preliminary results provide evidence that chronic exposure to environmental levels of EDs or mixtures of EDs have a detrimental impact on the male reproductive tract. The next step involves assessment of the anatomical disorders and the study of some of the cellular and molecular mechanisms possibly involved.  相似文献   

12.
Phytoestrogens, or naturally occurring estrogen-mimicking compounds, are found in many human plant foods, such as soybeans (Glycine max) and other legumes. Because the consumption of phytoestrogens may result in both health benefits of protecting against estrogen-dependent cancers and reproductive costs of disrupting the developing endocrine system, considerable biomedical research has been focused on the physiological and behavioral effects of these compounds. Despite this interest, little is known about the occurrence of phytoestrogens in the diets of wild primates, nor their likely evolutionary importance. We investigated the prevalence of estrogenic plant foods in the diets of two folivorous primate species, the red colobus monkey (Procolobus rufomitratus) of Kibale National Park and mountain gorilla (Gorilla beringei) of Bwindi Impenetrable National Park, both in Uganda. To examine plant foods for estrogenic activity, we screened 44 plant items (species and part) comprising 78.4% of the diet of red colobus monkeys and 53 plant items comprising 85.2% of the diet of mountain gorillas using transient transfection assays. At least 10.6% of the red colobus diet and 8.8% of the gorilla diet had estrogenic activity. This was mainly the result of the red colobus eating three estrogenic staple foods and the gorillas eating one estrogenic staple food. All estrogenic plants exhibited estrogen receptor (ER) subtype selectivity, as their phytoestrogens activated ERβ, but not ERα. These results demonstrate that estrogenic plant foods are routinely consumed by two folivorous primate species. Phytoestrogens in the wild plant foods of these two species and many other wild primates may have important implications for understanding primate reproductive ecology.  相似文献   

13.
Many plants have been known to be contaminated and accumulate plasticizers from the environment, including water sources, soil, and atmosphere. Plasticizers are used to confer elasticity and flexibility to various fiber and plastic products. Consumption of plasticizers can lead to many adverse effects on human health, including reproductive and developmental toxicity, endocrine disruption, and cancer. Herein, we report for the first time that two plasticizers, bis(2-ethylhexyl) terephthalate (DEHT) and bis(2-ethylhexyl) phthalate (DEHP), have been isolated from the leaves of Capparis spinosa L. (the caper bush), a plant that is widely used in food seasonings and traditional medicine. 297 mg/kg of DEHT and 48 mg/kg of DEHP were isolated from dried and grounded C. spinosa L. leaves using column chromatography and semi-preparative high-performance liquid chromatography. Our study adds to the increase in the detection of plasticizers in our food and medicinal plants and to the alarming concern about their potential adverse effects on human health.  相似文献   

14.
Research on endocrine disruptors (EDs) developed from numerous disciplines. In this concert of disciplines, epidemiology is central to inform on the relevance for humans of mechanisms and dose-response functions identified in animals, to characterize the health impact (number of attributable disease cases), the cost associated with ED exposure, and the efficiency of the measures taken to limit exposure. Here, we present epidemiological tools to draw valid inference regarding effects of potential EDs. Epidemiology is generally observational, requiring care to control confounding bias. Many potential EDs have a short biological half-life; approaches relying on repeated biospecimens sampling allow limiting exposure misclassification and the resulting bias. For non-persistent compounds, couple–child cohorts are a central study design. Cohorts can now rely on molecular biology approaches to characterize exposures and intermediate pathways, which corresponds to the advent of molecular epidemiology and allows stronger interactions between epidemiology, toxicology, and molecular epidemiology to characterize the health effects of EDs.  相似文献   

15.
16.
Endocrine-disrupting compounds (EDCs) have the capacity of altering the normal function of the endocrine system. EDCs have shown dramatic effects on the reproductive biology of aquatic wildlife and may affect human reproduction as well. Studies on EDCs in mammalian species have often investigated the effects of short-term, high doses on male and female reproductive physiology. However, it is difficult to predict from such studies the effects of EDC on populations that are exposed to very low doses throughout their life via contaminated food and water. We studied the effects of EDC on mammalian reproduction with an environmental-like protocol where the endpoint is the reproductive success of exposed pairs. We focused on a subclass of EDC, the xenoestrogens, which mimic the action of natural oestrogen hormones. Male and female rats were exposed to low doses of the pure oestrogen, ethynyloestradiol, during development, by oral administration to their mothers during pregnancy and lactation, and to them until puberty. We evaluated the effects of the exposure on development and reproductive physiology of individuals, and on fertility and fecundity of pairs in which both members had been exposed to the same treatment. We found that low doses caused major reproductive deficits in the experimental animals. Very low, environmentally relevant doses did not have evident effects on exposed animals; however, the fecundity of exposed pairs was substantially altered. Environmentally relevant doses of xenoestrogens which have no evident physiological effects can alter the reproductive success of exposed pairs in natural populations.  相似文献   

17.
Endocrine modulation by natural and synthetic chemicals and the eventually resulting beneficial or adverse effects for human and animal health are controversially debated not only among scientists but particularly in the public. Most information is available on so-called environmental estrogens, however the amount of information on substances interfering with other hormonal axes steadily increases, particularly on those exhibiting (anti)androgenic activities. The aim of this paper is to summarize existing data and to give an overview on the potential pathways leading to interferences of environmental hormones with homeostasis and eventually resulting health effects. Experimental evidence suggests the hypothesis that fetal and neonatal organisms may be at risk if exposed to environmental estrogens. In contrary, it appears as if phytoestrogens, particularly those with selective estrogen receptor modulator- (SERM-)like activities have the potential to be useful in medical application, both as dietary means and as pharmaceuticals. Lacking valid information about the detailed analysis of the molecular mode of action for environmental estrogens, the possibility for an ultimate classification of environmental estrogens in "dangerous endocrine disruptors" and phytoestrogens in "useful pharmaceuticals" cannot be supported conclusively. Nevertheless both activities are likely.  相似文献   

18.
An attempt has been made to review the endocrine/hormonal implications of a few environmentally significant metals, viz, lead, mercury, cadmium, copper, arsenic and nickel, in man and animals. Special emphasis has been given to the adrenals, thyroid, testis, ovary and pancreas. Toxic metals can cause structural and functional changes in the adrenal glands. Their effects on steroidogenesis have been reviewed. It has been reported that thyroid hormone kinetics are affected by a number of metallic compounds. Occupational exposure to a few of these metals can cause testicular injury and sex hormone disturbances. Protective effects of a few antioxidants on their reproductive toxicity have also been discussed. Information gathered on female reproductive toxicity of heavy metals shows that exposure to these metals can lead to disturbances in reproductive performance in exposed subjects. Certain metals can cause injury to the endocrine pancreas. Exposure to them can cause diabetes mellitus and disturb insulin homeostasis. The need to develop molecular markers of endocrine toxicity of heavy metals has been suggested. Overall information described in this review is expected to be helpful in planning future studies on endocrine toxicity of heavy metals.  相似文献   

19.
Plastic pipes used to convey hot and cold drinking water are synthetic polymers containing numerous additives that enhance durability, impact strength, and toughness, and resist material degradation. Although some research studies have been conducted to evaluate the type and levels of chemical substances migrating from polymeric materials into drinking water, the potential adverse health effects associated with these compounds in potable water have not been described. This review evaluates the literature on the occurrence of regulated and unregulated substances in drinking water related to the use of plastic pipes, characterizes potential health hazards, and describes uncertainties associated with human health and exposure in need of further research. Of particular public health concern is the potential for sensitive populations to be exposed to short-term elevations in leachates during critical periods, and for co-occurring leachates targeting the same organ(s) and/or sharing a common mode of toxic action to have additive or synergistic effects. Contaminants are measured in the distribution system, not at the tap where human exposure actually occurs. For increased health protection, it is important to identify compounds that migrate from plastic pipes into drinking water and to better quantify human exposures and health hazards to these substances and their degradates.  相似文献   

20.
Fundulus heteroclitus, the mummichog or Atlantic killifish, is the dominant small-bodied fish species of the east coast estuaries and salt marshes of Canada and the USA, where it is present as two subspecies, the northern F. h. macrolepidotus and the southern F. h. heteroclitus. Recently identified as the premier teleost model in environmental biology, the species has long been of value in understanding evolved tolerance to toxicants and more lately in adding to our knowledge about reproductive effects of environmental endocrine disruptors. The body of literature on F. heteroclitus ovarian physiology and reproduction, from both field and laboratory studies, provides the foundation for present work focused on understanding the reproductive effects and modes of action of environmental toxicants. In this paper, we review the environmental and endocrine factors controlling ovarian and reproductive cycling in F. heteroclitus, noting specifics related to field and laboratory studies on the two subspecies as well as key research gaps compared to other fish species. We also summarize recent development of methodologies to study the effects of environmental contaminants on endocrine signalling and egg production in F. heteroclitus. Continued efforts to progress both our fundamental understanding of reproductive physiology in mummichog, coupled with studies focused on the modes of action of environmental contaminants, have high potential to further develop this teleost model. While the model may presently lag behind those based on other species of fish, the unique biochemical and physiological adaptations which allow F. heteroclitus to adapt to changing environmental and toxic conditions provide a valuable experimental system for comparative physiologists, ecotoxicologists and evolutionary biologists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号